zoukankan      html  css  js  c++  java
  • Python多线程学习

    一、Python中的线程使用:

        Python中使用线程有两种方式:函数或者用类来包装线程对象。

    1、  函数式:调用thread模块中的start_new_thread()函数来产生新线程。如下例:

     1 import time  
     2 import thread  
     3 def timer(no, interval):  
     4     cnt = 0  
     5     while cnt<10:  
     6         print 'Thread:(%d) Time:%s
    '%(no, time.ctime())  
     7         time.sleep(interval)  
     8         cnt+=1  
     9     thread.exit_thread()  
    10      
    11    
    12 def test(): #Use thread.start_new_thread() to create 2 new threads  
    13     thread.start_new_thread(timer, (1,1))  
    14     thread.start_new_thread(timer, (2,2))  
    15    
    16 if __name__=='__main__':  
    17     test()  

    上面的例子定义了一个线程函数timer,它打印出10条时间记录后退出,每次打印的间隔由interval参数决定。thread.start_new_thread(function, args[, kwargs])的第一个参数是线程函数(本例中的timer方法),第二个参数是传递给线程函数的参数,它必须是tuple类型,kwargs是可选参数。

        线程的结束可以等待线程自然结束,也可以在线程函数中调用thread.exit()或thread.exit_thread()方法。

    2、  创建threading.Thread的子类来包装一个线程对象,如下例:

     1 import threading  
     2 import time  
     3 class timer(threading.Thread): #The timer class is derived from the class threading.Thread  
     4     def __init__(self, num, interval):  
     5         threading.Thread.__init__(self)  
     6         self.thread_num = num  
     7         self.interval = interval  
     8         self.thread_stop = False  
     9    
    10     def run(self): #Overwrite run() method, put what you want the thread do here  
    11         while not self.thread_stop:  
    12             print 'Thread Object(%d), Time:%s
    ' %(self.thread_num, time.ctime())  
    13             time.sleep(self.interval)  
    14     def stop(self):  
    15         self.thread_stop = True  
    16          
    17    
    18 def test():  
    19     thread1 = timer(1, 1)  
    20     thread2 = timer(2, 2)  
    21     thread1.start()  
    22     thread2.start()  
    23     time.sleep(10)  
    24     thread1.stop()  
    25     thread2.stop()  
    26     return  
    27    
    28 if __name__ == '__main__':  
    29     test()  

    第二种方式,即创建自己的线程类,必要时重写threading.Thread类的方法,线程的控制可以由自己定制。

    threading.Thread类的使用:

    1,在自己的线程类的__init__里调用threading.Thread.__init__(self, name = threadname)

    Threadname为线程的名字

    2, run(),通常需要重写,编写代码实现做需要的功能。

    3,getName(),获得线程对象名称

    4,setName(),设置线程对象名称

    5,start(),启动线程

    6,jion([timeout]),等待另一线程结束后再运行。

    7,setDaemon(bool),设置子线程是否随主线程一起结束,必须在start()之前调用。默认为False。

    8,isDaemon(),判断线程是否随主线程一起结束。

    9,isAlive(),检查线程是否在运行中。

        此外threading模块本身也提供了很多方法和其他的类,可以帮助我们更好的使用和管理线程。可以参看http://www.python.org/doc/2.5.2/lib/module-threading.html

    假设两个线程对象t1和t2都要对num=0进行增1运算,t1和t2都各对num修改10次,num的最终的结果应该为20。但是由于是多线程访问,有可能出现下面情况:在num=0时,t1取得num=0。系统此时把t1调度为”sleeping”状态,把t2转换为”running”状态,t2页获得num=0。然后t2对得到的值进行加1并赋给num,使得num=1。然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给num。这样,明明t1和t2都完成了1次加1工作,但结果仍然是num=1。

        上面的case描述了多线程情况下最常见的问题之一:数据共享。当多个线程都要去修改某一个共享数据的时候,我们需要对数据访问进行同步。

    1、  简单的同步

    最简单的同步机制就是“锁”。锁对象由threading.RLock类创建。线程可以使用锁的acquire()方法获得锁,这样锁就进入“locked”状态。每次只有一个线程可以获得锁。如果当另一个线程试图获得这个锁的时候,就会被系统变为“blocked”状态,直到那个拥有锁的线程调用锁的release()方法来释放锁,这样锁就会进入“unlocked”状态。“blocked”状态的线程就会收到一个通知,并有权利获得锁。如果多个线程处于“blocked”状态,所有线程都会先解除“blocked”状态,然后系统选择一个线程来获得锁,其他的线程继续沉默(“blocked”)。

    Python中的thread模块和Lock对象是Python提供的低级线程控制工具,使用起来非常简单。如下例所示:

     1 import thread  
     2 import time  
     3 mylock = thread.allocate_lock()  #Allocate a lock  
     4 num=0  #Shared resource  
     5   
     6 def add_num(name):  
     7     global num  
     8     while True:  
     9         mylock.acquire() #Get the lock   
    10         # Do something to the shared resource  
    11         print 'Thread %s locked! num=%s'%(name,str(num))  
    12         if num >= 5:  
    13             print 'Thread %s released! num=%s'%(name,str(num))  
    14             mylock.release()  
    15             thread.exit_thread()  
    16         num+=1  
    17         print 'Thread %s released! num=%s'%(name,str(num))  
    18         mylock.release()  #Release the lock.  
    19   
    20 def test():  
    21     thread.start_new_thread(add_num, ('A',))  
    22     thread.start_new_thread(add_num, ('B',))  
    23   
    24 if __name__== '__main__':  
    25     test()  

    Python 在thread的基础上还提供了一个高级的线程控制库,就是之前提到过的threading。Python的threading module是在建立在thread module基础之上的一个module,在threading module中,暴露了许多thread module中的属性。在thread module中,python提供了用户级的线程同步工具“Lock”对象。而在threading module中,python又提供了Lock对象的变种: RLock对象。RLock对象内部维护着一个Lock对象,它是一种可重入的对象。对于Lock对象而言,如果一个线程连续两次进行acquire操作,那么由于第一次acquire之后没有release,第二次acquire将挂起线程。这会导致Lock对象永远不会release,使得线程死锁。RLock对象允许一个线程多次对其进行acquire操作,因为在其内部通过一个counter变量维护着线程acquire的次数。而且每一次的acquire操作必须有一个release操作与之对应,在所有的release操作完成之后,别的线程才能申请该RLock对象。

    下面来看看如何使用threading的RLock对象实现同步。

     1 import threading  
     2 mylock = threading.RLock()  
     3 num=0  
     4    
     5 class myThread(threading.Thread):  
     6     def __init__(self, name):  
     7         threading.Thread.__init__(self)  
     8         self.t_name = name  
     9           
    10     def run(self):  
    11         global num  
    12         while True:  
    13             mylock.acquire()  
    14             print '
    Thread(%s) locked, Number: %d'%(self.t_name, num)  
    15             if num>=4:  
    16                 mylock.release()  
    17                 print '
    Thread(%s) released, Number: %d'%(self.t_name, num)  
    18                 break  
    19             num+=1  
    20             print '
    Thread(%s) released, Number: %d'%(self.t_name, num)  
    21             mylock.release()  
    22               
    23 def test():  
    24     thread1 = myThread('A')  
    25     thread2 = myThread('B')  
    26     thread1.start()  
    27     thread2.start()  
    28    
    29 if __name__== '__main__':  
    30     test()  

    我们把修改共享数据的代码成为“临界区”。必须将所有“临界区”都封闭在同一个锁对象的acquire和release之间。

    2、  条件同步

    锁只能提供最基本的同步。假如只在发生某些事件时才访问一个“临界区”,这时需要使用条件变量Condition。

    Condition对象是对Lock对象的包装,在创建Condition对象时,其构造函数需要一个Lock对象作为参数,如果没有这个Lock对象参数,Condition将在内部自行创建一个Rlock对象。在Condition对象上,当然也可以调用acquire和release操作,因为内部的Lock对象本身就支持这些操作。但是Condition的价值在于其提供的wait和notify的语义。

    条件变量是如何工作的呢?首先一个线程成功获得一个条件变量后,调用此条件变量的wait()方法会导致这个线程释放这个锁,并进入“blocked”状态,直到另一个线程调用同一个条件变量的notify()方法来唤醒那个进入“blocked”状态的线程。如果调用这个条件变量的notifyAll()方法的话就会唤醒所有的在等待的线程。

    如果程序或者线程永远处于“blocked”状态的话,就会发生死锁。所以如果使用了锁、条件变量等同步机制的话,一定要注意仔细检查,防止死锁情况的发生。对于可能产生异常的临界区要使用异常处理机制中的finally子句来保证释放锁。等待一个条件变量的线程必须用notify()方法显式的唤醒,否则就永远沉默。保证每一个wait()方法调用都有一个相对应的notify()调用,当然也可以调用notifyAll()方法以防万一。

    生产者与消费者问题是典型的同步问题。这里简单介绍两种不同的实现方法。

    1,  条件变量

     1 import threading  
     2   
     3 import time  
     4   
     5 class Producer(threading.Thread):  
     6   
     7     def __init__(self, t_name):  
     8   
     9         threading.Thread.__init__(self, name=t_name)  
    10   
    11    
    12   
    13     def run(self):  
    14   
    15         global x  
    16   
    17         con.acquire()  
    18   
    19         if x > 0:  
    20   
    21             con.wait()  
    22   
    23         else:  
    24   
    25             for i in range(5):  
    26   
    27                 x=x+1  
    28   
    29                 print "producing..." + str(x)  
    30   
    31             con.notify()  
    32   
    33         print x  
    34   
    35         con.release()  
    36   
    37    
    38   
    39 class Consumer(threading.Thread):  
    40   
    41     def __init__(self, t_name):  
    42   
    43         threading.Thread.__init__(self, name=t_name)  
    44   
    45     def run(self):  
    46   
    47         global x  
    48   
    49         con.acquire()  
    50   
    51         if x == 0:  
    52   
    53             print 'consumer wait1'  
    54   
    55             con.wait()  
    56   
    57         else:  
    58   
    59             for i in range(5):  
    60   
    61                 x=x-1  
    62   
    63                 print "consuming..." + str(x)  
    64   
    65             con.notify()  
    66   
    67         print x  
    68   
    69         con.release()  
    70   
    71    
    72   
    73 con = threading.Condition()  
    74   
    75 x=0  
    76   
    77 print 'start consumer'  
    78   
    79 c=Consumer('consumer')  
    80   
    81 print 'start producer'  
    82   
    83 p=Producer('producer')  
    84   
    85    
    86   
    87 p.start()  
    88   
    89 c.start()  
    90   
    91 p.join()  
    92   
    93 c.join()  
    94   
    95 print x  

     上面的例子中,在初始状态下,Consumer处于wait状态,Producer连续生产(对x执行增1操作)5次后,notify正在等待的Consumer。Consumer被唤醒开始消费(对x执行减1操作) 

    2,  同步队列

    Python中的Queue对象也提供了对线程同步的支持。使用Queue对象可以实现多个生产者和多个消费者形成的FIFO的队列。

    生产者将数据依次存入队列,消费者依次从队列中取出数据。

     1 # producer_consumer_queue  
     2   
     3 from Queue import Queue  
     4   
     5 import random  
     6   
     7 import threading  
     8   
     9 import time  
    10   
    11    
    12   
    13 #Producer thread  
    14   
    15 class Producer(threading.Thread):  
    16   
    17     def __init__(self, t_name, queue):  
    18   
    19         threading.Thread.__init__(self, name=t_name)  
    20   
    21         self.data=queue  
    22   
    23     def run(self):  
    24   
    25         for i in range(5):  
    26   
    27             print "%s: %s is producing %d to the queue!
    " %(time.ctime(), self.getName(), i)  
    28   
    29             self.data.put(i)  
    30   
    31             time.sleep(random.randrange(10)/5)  
    32   
    33         print "%s: %s finished!" %(time.ctime(), self.getName())  
    34   
    35    
    36   
    37 #Consumer thread  
    38   
    39 class Consumer(threading.Thread):  
    40   
    41     def __init__(self, t_name, queue):  
    42   
    43         threading.Thread.__init__(self, name=t_name)  
    44   
    45         self.data=queue  
    46   
    47     def run(self):  
    48   
    49         for i in range(5):  
    50   
    51             val = self.data.get()  
    52   
    53             print "%s: %s is consuming. %d in the queue is consumed!
    " %(time.ctime(), self.getName(), val)  
    54   
    55             time.sleep(random.randrange(10))  
    56   
    57         print "%s: %s finished!" %(time.ctime(), self.getName())  
    58   
    59    
    60   
    61 #Main thread  
    62   
    63 def main():  
    64   
    65     queue = Queue()  
    66   
    67     producer = Producer('Pro.', queue)  
    68   
    69     consumer = Consumer('Con.', queue)  
    70   
    71     producer.start()  
    72   
    73     consumer.start()  
    74   
    75     producer.join()  
    76   
    77     consumer.join()  
    78   
    79     print 'All threads terminate!'  
    80   
    81    
    82   
    83 if __name__ == '__main__':  
    84   
    85     main()  

    在上面的例子中,Producer在随机的时间内生产一个“产品”,放入队列中。Consumer发现队列中有了“产品”,就去消费它。本例中,由于Producer生产的速度快于Consumer消费的速度,所以往往Producer生产好几个“产品”后,Consumer才消费一个产品。

    Queue模块实现了一个支持多producer和多consumer的FIFO队列。当共享信息需要安全的在多线程之间交换时,Queue非常有用。Queue的默认长度是无限的,但是可以设置其构造函数的maxsize参数来设定其长度。Queue的put方法在队尾插入,该方法的原型是:

    put( item[, block[, timeout]])

    如果可选参数block为true并且timeout为None(缺省值),线程被block,直到队列空出一个数据单元。如果timeout大于0,在timeout的时间内,仍然没有可用的数据单元,Full exception被抛出。反之,如果block参数为false(忽略timeout参数),item被立即加入到空闲数据单元中,如果没有空闲数据单元,Full exception被抛出。

    Queue的get方法是从队首取数据,其参数和put方法一样。如果block参数为true且timeout为None(缺省值),线程被block,直到队列中有数据。如果timeout大于0,在timeout时间内,仍然没有可取数据,Empty exception被抛出。反之,如果block参数为false(忽略timeout参数),队列中的数据被立即取出。如果此时没有可取数据,Empty exception也会被抛出。

  • 相关阅读:
    web图片100%宽度自适应,高度不塌陷
    基于Kafka+ELK搭建海量日志平台
    一句话撸完重量级锁、自旋锁、轻量级锁、偏向锁、悲观、乐观锁等
    MySQL数据库设计规范
    夺命连环问:一个 TCP 连接可以发多少个 HTTP 请求?
    [Kafka]
    ZooKeeper学习总结 第一篇:ZooKeeper快速入门
    Vue图片浏览组件v-viewer,支持旋转、缩放、翻转等操作
    opencv处理验证码python代码
    mac使用pytesseract
  • 原文地址:https://www.cnblogs.com/liu-ke/p/5039684.html
Copyright © 2011-2022 走看看