问题描述
题解
费用流。
套路拆点,把((i,j))拆为两个点,在这两个点之间连边:一条边流量为(1),费用为(a_{i,j}),另一条边为流量为(INF),费用为(0)(表示联通)。
然后在((i,j))的出点向((i+1,j)),((i,j+1))连边,流量(INF),费用(0),表示联通。
建立(S,T),分别于((1,1),(n,n))相连,流量为(k),费用为(0),代表可以走(k)次。
跑费用最大流即可。
传纸条本质是本题的特殊情况,即(k=2)的情况
(mathrm{Code})
#include<bits/stdc++.h>
using namespace std;
template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();
if(ch=='-') ch=getchar(),fh=-1;
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
}
const int maxn=53;
const int maxm=1000000;
const int INF=0x3f3f3f3f;
int a[maxn][maxn],n,k;
int Head[maxn*maxn*2],S,T;
int Next[maxm],to[maxm],tot=1,w[maxm],cost[maxm];
void add(int x,int y,int z,int c){
to[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z,cost[tot]=c;
}
int calc(int x,int y,int t){
return (x-1)*n+y+(t-1)*n*n;
}
bool vis[maxm];
int dis[maxm],pre[maxm],now[maxm];
bool spfa(){
memset(vis,0,sizeof(vis));memset(dis,0xcf,sizeof(dis));
memset(pre,0,sizeof(pre));
queue<int>q;q.push(S);vis[S]=1,dis[S]=0;
now[S]=INF;
while(!q.empty()){
int x=q.front();q.pop();
vis[x]=0;
for(int i=Head[x];i;i=Next[i]){
int y=to[i],len=w[i],ct=cost[i];
if(!len||dis[y]>=dis[x]+ct) continue;
dis[y]=dis[x]+ct;now[y]=min(now[x],len);
pre[y]=i;
if(!vis[y]) q.push(y),vis[y]=1;
}
}
return dis[T]!=0xcfcfcfcf;
}
int mx,ans;
void upd(){
mx+=now[T],ans+=dis[T]*now[T];
int p=T;
while(p!=S){
int k=pre[p];
w[k]-=now[T],w[k xor 1]+=now[T];
p=to[k xor 1];
}
}
int main(){
read(n);read(k);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
read(a[i][j]);
}
}
S=n*n*2+1,T=S+1;
add(S,calc(1,1,1),k,0);add(calc(1,1,1),S,0,0);
add(calc(n,n,2),T,k,0);add(T,calc(n,n,2),0,0);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
add(calc(i,j,1),calc(i,j,2),1,a[i][j]);add(calc(i,j,2),calc(i,j,1),0,-a[i][j]);
add(calc(i,j,1),calc(i,j,2),INF,0);add(calc(i,j,2),calc(i,j,1),0,0);
if(i!=n) add(calc(i,j,2),calc(i+1,j,1),INF,0),add(calc(i+1,j,1),calc(i,j,2),0,0);
if(j!=n) add(calc(i,j,2),calc(i,j+1,1),INF,0),add(calc(i,j+1,1),calc(i,j,2),0,0);
}
}
while(spfa())
upd();
printf("%d
",ans);
return 0;
}