zoukankan      html  css  js  c++  java
  • 数列分块入门1~9

    数列分块入门1~9

    数列分块入门 1

    题目传送门

    分析

    板板题,大块打标记,小块打暴力

    代码

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6 + 5;
    int a[maxn], blo, shuyu[maxn], siz[maxn], sum[maxn], ad[maxn];
    void xg(int l, int r, int val) {
        for (int i = l; i <= min(r, shuyu[l] * blo); i++) {
            a[i] += val;
            sum[shuyu[i]] += val;
        }
        if (shuyu[l] == shuyu[r])
            return;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            a[i] += val;
            sum[shuyu[i]] += val;
        }
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            ad[i] += val;
        }
    }
    int main() {
        int n;
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
        }
        blo = (int)sqrt(n);
        for (int i = 1; i <= n; i++) {
            shuyu[i] = (i - 1) / blo + 1;
            siz[shuyu[i]]++;
            sum[shuyu[i]] += a[i];
        }
        for (int i = 1; i <= n; i++) {
            int aa, bb, cc, dd;
            scanf("%d%d%d%d", &aa, &bb, &cc, &dd);
            if (aa == 0) {
                xg(bb, cc, dd);
            } else {
                printf("%d
    ", a[cc] + ad[shuyu[cc]]);
            }
        }
        return 0;
    }
    

    数列分块入门 2

    题目传送门

    分析

    区间加法直接整块打标记,查询区间内小于某个值的元素用(vector)存储,二分找一下即可

    代码

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6 + 5;
    vector<int> g[maxn];
    int a[maxn], blo, shuyu[maxn], laz[maxn], sum[maxn];
    void qk(int id) {
        g[id].clear();
        for (int i = (id - 1) * blo + 1; i <= id * blo; i++) {
            g[id].push_back(a[i]);
        }
        sort(g[id].begin(), g[id].end());
    }
    void ad(int l, int r, int val) {
        for (int i = l; i <= min(r, shuyu[l] * blo); i++) {
            a[i] += val;
            sum[shuyu[i]] += val;
        }
        qk(shuyu[l]);
        if (shuyu[l] == shuyu[r])
            return;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            a[i] += val;
            sum[shuyu[i]] += val;
        }
        qk(shuyu[r]);
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            laz[i] += val;
        }
    }
    int cx(int l, int r, int val) {
        int ans = 0;
        for (int i = l; i <= min(r, shuyu[l] * blo); i++) {
            if (a[i] + laz[shuyu[i]] < val)
                ans++;
        }
        if (shuyu[l] == shuyu[r])
            return ans;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            if (a[i] + laz[shuyu[i]] < val)
                ans++;
        }
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            ans += lower_bound(g[i].begin(), g[i].end(), val - laz[i]) - g[i].begin();
        }
        return ans;
    }
    int main() {
        int n;
        scanf("%d", &n);
        blo = (int)sqrt(n);
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
            shuyu[i] = (i - 1) / blo + 1;
            g[shuyu[i]].push_back(a[i]);
            sum[shuyu[i]] += a[i];
        }
        for (int i = 1; i <= shuyu[n]; i++) {
            sort(g[i].begin(), g[i].end());
        }
        for (int i = 1; i <= n; i++) {
            int aa, bb, cc, dd;
            scanf("%d%d%d%d", &aa, &bb, &cc, &dd);
            if (aa == 0) {
                ad(bb, cc, dd);
            } else {
                printf("%d
    ", cx(bb, cc, dd * dd));
            }
        }
        return 0;
    }
    

    数列分块入门 3

    题目传送门

    分析

    和上一道题基本雷同

    代码

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6 + 5;
    vector<int> g[maxn];
    int a[maxn], blo, shuyu[maxn], laz[maxn], sum[maxn];
    void qk(int id) {
        g[id].clear();
        for (int i = (id - 1) * blo + 1; i <= id * blo; i++) {
            g[id].push_back(a[i]);
        }
        sort(g[id].begin(), g[id].end());
    }
    void ad(int l, int r, int val) {
        for (int i = l; i <= min(r, shuyu[l] * blo); i++) {
            a[i] += val;
            sum[shuyu[i]] += val;
        }
        qk(shuyu[l]);
        if (shuyu[l] == shuyu[r])
            return;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            a[i] += val;
            sum[shuyu[i]] += val;
        }
        qk(shuyu[r]);
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            laz[i] += val;
        }
    }
    int cx(int l, int r, int val) {
        int qz = -1;
        for (int i = l; i <= min(r, shuyu[l] * blo); i++) {
            if (a[i] + laz[shuyu[i]] < val && (abs(val - qz) > abs(val - (a[i] + laz[shuyu[i]])) || qz == -1))
                qz = a[i] + laz[shuyu[i]];
        }
        if (shuyu[l] == shuyu[r])
            return qz;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            if (a[i] + laz[shuyu[i]] < val && (abs(val - qz) > abs(val - (a[i] + laz[shuyu[i]])) || qz == -1))
                qz = a[i] + laz[shuyu[i]];
        }
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            int now = lower_bound(g[i].begin(), g[i].end(), val - laz[i]) - g[i].begin();
            if (now == 0)
                continue;
            else {
                if (g[i][now - 1] + laz[i] < val &&
                    (abs(val - qz) > abs(val - (g[i][now - 1] + laz[i])) || qz == -1))
                    qz = g[i][now - 1] + laz[i];
            }
        }
        return qz;
    }
    int main() {
        int n;
        scanf("%d", &n);
        blo = (int)sqrt(n);
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
            shuyu[i] = (i - 1) / blo + 1;
            g[shuyu[i]].push_back(a[i]);
            sum[shuyu[i]] += a[i];
        }
        for (int i = 1; i <= shuyu[n]; i++) {
            sort(g[i].begin(), g[i].end());
        }
        for (int i = 1; i <= n; i++) {
            int aa, bb, cc, dd;
            scanf("%d%d%d%d", &aa, &bb, &cc, &dd);
            if (aa == 0) {
                ad(bb, cc, dd);
            } else {
                printf("%d
    ", cx(bb, cc, dd));
            }
        }
        return 0;
    }
    

    数列分块入门 4

    题目传送门

    分析

    板板题,直接放代码

    代码

    #include <bits/stdc++.h>
    using namespace std;
    #define int long long
    const int maxn = 1e6 + 5;
    int a[maxn], blo, n, shuyu[maxn], sum[maxn], laz[maxn], siz[maxn];
    void ad(int l, int r, int val) {
        for (int i = l; i <= min(shuyu[l] * blo, r); i++) {
            a[i] += val;
            sum[shuyu[i]] += val;
        }
        if (shuyu[l] == shuyu[r])
            return;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            a[i] += val;
            sum[shuyu[i]] += val;
        }
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            laz[i] += val;
        }
    }
    long long cx(int l, int r, int mod) {
        mod++;
        long long ans = 0;
        for (int i = l; i <= min(shuyu[l] * blo, r); i++) {
            ans += (long long)(a[i] + laz[shuyu[i]]) % mod;
        }
        if (shuyu[l] == shuyu[r])
            return ans % mod;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            ans += (long long)(a[i] + laz[shuyu[i]]) % mod;
        }
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            ans += (long long)(sum[i] + laz[i] * siz[i]) % mod;
        }
        return ans % mod;
    }
    signed main() {
        scanf("%lld", &n);
        for (int i = 1; i <= n; i++) {
            scanf("%lld", &a[i]);
        }
        blo = (int)sqrt(n);
        for (int i = 1; i <= n; i++) {
            shuyu[i] = (i - 1) / blo + 1;
            sum[shuyu[i]] += a[i];
            siz[shuyu[i]]++;
        }
        for (int i = 1; i <= n; i++) {
            int aa, bb, cc, dd;
            scanf("%lld%lld%lld%lld", &aa, &bb, &cc, &dd);
            if (aa == 0) {
                ad(bb, cc, dd);
            } else {
                printf("%lld
    ", cx(bb, cc, dd));
            }
        }
        return 0;
    }
    

    数列分块入门 5

    题目传送门

    分析

    对于一个区间,经过若干次开根后,必定会变成(1)或者(0),我们把这些区间记录一下,下次操作是把它跳过就行了

    代码

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 2e6 + 5;
    #define int long long
    int a[maxn], blo, n, shuyu[maxn], sum[maxn], siz[maxn], tag[maxn];
    void kf(int l, int r) {
        for (int i = l; i <= min(shuyu[l] * blo, r); i++) {
            if (tag[shuyu[i]] != -1)
                continue;
            sum[shuyu[i]] -= (a[i] - sqrt(a[i]));
            a[i] = sqrt(a[i]);
        }
        if (shuyu[l] == shuyu[r])
            return;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            if (tag[shuyu[i]] != -1)
                continue;
            sum[shuyu[i]] -= (a[i] - sqrt(a[i]));
            a[i] = sqrt(a[i]);
        }
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            if (tag[i] != -1)
                continue;
            bool is0 = 0, is1 = 0;
            for (int j = (i - 1) * blo + 1; j <= i * blo; j++) {
                sum[shuyu[j]] -= (a[j] - sqrt(a[j]));
                a[j] = sqrt(a[j]);
                if (a[j] != 1)
                    is1 = 1;
                if (a[j] != 0)
                    is0 = 1;
            }
            if (is1 == 0)
                tag[i] = 1;
            else if (is0 == 0)
                tag[i] = 0;
        }
    }
    int cx(int l, int r) {
        int ans = 0;
        for (int i = l; i <= min(shuyu[l] * blo, r); i++) {
            ans += a[i];
        }
        if (shuyu[l] == shuyu[r])
            return ans;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            ans += a[i];
        }
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            if (tag[i] == 0)
                continue;
            else if (tag[i] == 1)
                ans += siz[i];
            else
                ans += sum[i];
        }
        return ans;
    }
    signed main() {
        scanf("%lld", &n);
        for (int i = 1; i <= n; i++) {
            scanf("%lld", &a[i]);
            tag[i] = -1;
        }
        blo = (int)sqrt(n);
        for (int i = 1; i <= n; i++) {
            shuyu[i] = (i - 1) / blo + 1;
            sum[shuyu[i]] += a[i];
            siz[shuyu[i]]++;
        }
        for (int i = 1; i <= n; i++) {
            int aa, bb, cc, dd;
            scanf("%lld%lld%lld%lld", &aa, &bb, &cc, &dd);
            if (aa == 0) {
                kf(bb, cc);
            } else {
                printf("%lld
    ", cx(bb, cc));
            }
        }
        return 0;
    }
    

    数列分块入门 6

    题目传送门

    分析

    (vector)大力乱搞

    代码

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6 + 5;
    int a[maxn], blo, n, nn, shuyu[maxn];
    vector<int> g[maxn];
    void ad(int wz, int val) {
        for (int i = shuyu[1]; i <= shuyu[n]; i++) {
            if (wz > g[i].size())
                wz -= g[i].size();
            else {
                g[i].insert(g[i].begin() + wz, val);
                return;
            }
        }
    }
    int cx(int wz) {
        for (int i = shuyu[1]; i <= shuyu[n]; i++) {
            if (wz > g[i].size())
                wz -= g[i].size();
            else {
                return g[i][wz - 1];
            }
        }
    }
    int main() {
        scanf("%d", &n);
        blo = sqrt(n);
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
        }
        for (int i = 1; i <= n; i++) {
            g[(i - 1) / blo + 1].push_back(a[i]);
            shuyu[i] = (i - 1) / blo + 1;
        }
        for (int i = 1; i <= n; i++) {
            int aa, bb, cc, dd;
            scanf("%d%d%d%d", &aa, &bb, &cc, &dd);
            if (aa == 0)
                ad(bb - 1, cc);
            else
                printf("%d
    ", cx(cc));
        }
        return 0;
    }
    

    数列分块入门 7

    题目传送门

    分析

    两个标记,先乘后加

    代码

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6 + 5;
    const int mod = 10007;
    int shuyu[maxn], a[maxn], lazj[maxn], lazc[maxn], n, blo;
    void push_down(int id) {
        for (int i = (id - 1) * blo + 1; i <= min(n, id * blo); i++) {
            a[i] = a[i] * lazc[id] % mod + lazj[id] % mod;
            a[i] %= mod;
        }
        lazj[id] = 0, lazc[id] = 1;
    }
    void jia(int l, int r, int val) {
        push_down(shuyu[l]);
        for (int i = l; i <= min(shuyu[l] * blo, r); i++) {
            a[i] += val;
            a[i] %= mod;
        }
        if (shuyu[l] == shuyu[r])
            return;
        push_down(shuyu[r]);
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            a[i] += val;
            a[i] %= mod;
        }
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            lazj[i] += val;
            lazj[i] %= mod;
        }
    }
    void cheng(int l, int r, int val) {
        push_down(shuyu[l]);
        for (int i = l; i <= min(shuyu[l] * blo, r); i++) {
            a[i] *= val;
            a[i] %= mod;
        }
        if (shuyu[l] == shuyu[r])
            return;
        push_down(shuyu[r]);
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            a[i] *= val;
            a[i] %= mod;
        }
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            lazj[i] *= val;
            lazc[i] *= val;
            lazj[i] %= mod;
            lazc[i] %= mod;
        }
    }
    int main() {
        scanf("%d", &n);
        blo = sqrt(n);
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
        }
        for (int i = 1; i <= n; i++) {
            shuyu[i] = (i - 1) / blo + 1;
            lazc[shuyu[i]] = 1;
        }
        for (int i = 1; i <= n; i++) {
            int aa, bb, cc, dd;
            scanf("%d%d%d%d", &aa, &bb, &cc, &dd);
            if (aa == 0) {
                jia(bb, cc, dd % mod);
            } else if (aa == 1) {
                cheng(bb, cc, dd % mod);
            } else {
                printf("%d
    ", (a[cc] * lazc[shuyu[cc]] % mod + lazj[shuyu[cc]]) % mod);
            }
        }
        return 0;
    }
    

    数列分块入门 8

    题目传送门

    分析

    大力二分,顺便打个(lazy)标记优化一下

    代码

    #include <bits/stdc++.h>
    #define fastcall __attribute__((optimize("-O3")))
    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize("Ofast")
    #pragma GCC optimize("inline")
    #pragma GCC optimize("-fgcse")
    #pragma GCC optimize("-fgcse-lm")
    #pragma GCC optimize("-fipa-sra")
    #pragma GCC optimize("-ftree-pre")
    #pragma GCC optimize("-ftree-vrp")
    #pragma GCC optimize("-fpeephole2")
    #pragma GCC optimize("-ffast-math")
    #pragma GCC optimize("-fsched-spec")
    #pragma GCC optimize("unroll-loops")
    #pragma GCC optimize("-falign-jumps")
    #pragma GCC optimize("-falign-loops")
    #pragma GCC optimize("-falign-labels")
    #pragma GCC optimize("-fdevirtualize")
    #pragma GCC optimize("-fcaller-saves")
    #pragma GCC optimize("-fcrossjumping")
    #pragma GCC optimize("-fthread-jumps")
    #pragma GCC optimize("-funroll-loops")
    #pragma GCC optimize("-freorder-blocks")
    #pragma GCC optimize("-fschedule-insns")
    #pragma GCC optimize("inline-functions")
    #pragma GCC optimize("-ftree-tail-merge")
    #pragma GCC optimize("-fschedule-insns2")
    #pragma GCC optimize("-fstrict-aliasing")
    #pragma GCC optimize("-falign-functions")
    #pragma GCC optimize("-fcse-follow-jumps")
    #pragma GCC optimize("-fsched-interblock")
    #pragma GCC optimize("-fpartial-inlining")
    #pragma GCC optimize("no-stack-protector")
    #pragma GCC optimize("-freorder-functions")
    #pragma GCC optimize("-findirect-inlining")
    #pragma GCC optimize("-fhoist-adjacent-loads")
    #pragma GCC optimize("-frerun-cse-after-loop")
    #pragma GCC optimize("inline-small-functions")
    #pragma GCC optimize("-finline-small-functions")
    #pragma GCC optimize("-ftree-switch-conversion")
    #pragma GCC optimize("-foptimize-sibling-calls")
    #pragma GCC optimize("-fexpensive-optimizations")
    #pragma GCC optimize("inline-functions-called-once")
    #pragma GCC optimize("-fdelete-null-pointer-checks")
    using namespace std;
    const int maxn = 1e6 + 5;
    int blo, shuyu[maxn], a[maxn], n, laz[maxn];
    vector<int> g[maxn];
    void cp(int id) {
        if (laz[id] != 0x3f3f3f3f)
            return;
        g[id].clear();
        for (int i = (id - 1) * blo + 1; i <= min(n, id * blo); i++) {
            g[id].push_back(a[i]);
        }
        sort(g[id].begin(), g[id].end());
    }
    int cx(int l, int r, int val) {
        int ans = 0;
        for (int i = l; i <= min(r, shuyu[l] * blo); i++) {
            if (laz[shuyu[i]] != 0x3f3f3f3f) {
                if (laz[shuyu[i]] == val)
                    ans++;
            } else {
                if (a[i] == val)
                    ans++;
            }
        }
        if (laz[shuyu[l]] != 0x3f3f3f3f) {
            for (int i = (shuyu[l] - 1) * blo + 1; i <= min(n, shuyu[l] * blo); i++) {
                if (i < l || i > min(r, shuyu[l] * blo))
                    a[i] = laz[shuyu[l]];
                else
                    a[i] = val;
            }
            laz[shuyu[l]] = 0x3f3f3f3f;
        } else {
            for (int i = l; i <= min(r, shuyu[l] * blo); i++) {
                if (i >= l && i <= min(r, shuyu[l] * blo))
                    a[i] = val;
            }
        }
        cp(shuyu[l]);
        if (shuyu[l] == shuyu[r])
            return ans;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            if (laz[shuyu[i]] != 0x3f3f3f3f) {
                if (laz[shuyu[i]] == val)
                    ans++;
            } else {
                if (a[i] == val)
                    ans++;
            }
        }
        if (laz[shuyu[r]] != 0x3f3f3f3f) {
            for (int i = (shuyu[r] - 1) * blo + 1; i <= min(n, shuyu[r] * blo); i++) {
                if (i > r)
                    a[i] = laz[shuyu[r]];
                else
                    a[i] = val;
            }
            laz[shuyu[r]] = 0x3f3f3f3f;
        } else {
            for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
                a[i] = val;
            }
        }
        cp(shuyu[r]);
        for (int i = shuyu[l] + 1; i <= shuyu[r] - 1; i++) {
            if (laz[i] != 0x3f3f3f3f && laz[i] != val)
                laz[i] = val;
            else if (laz[i] == val)
                ans += g[i].size();
            else {
                int aa = upper_bound(g[i].begin(), g[i].end(), val) - g[i].begin();
                int bb = lower_bound(g[i].begin(), g[i].end(), val) - g[i].begin();
                ans += aa - bb;
            }
            laz[i] = val;
        }
        return ans;
    }
    int main() {
        scanf("%d", &n);
        blo = sqrt(n);
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
        }
        for (int i = 1; i <= n; i++) {
            shuyu[i] = (i - 1) / blo + 1;
            g[shuyu[i]].push_back(a[i]);
        }
        for (int i = 1; i <= shuyu[n]; i++) {
            sort(g[i].begin(), g[i].end());
            laz[i] = 0x3f3f3f3f;
        }
        for (int i = 1; i <= n; i++) {
            int aa, bb, cc;
            scanf("%d%d%d", &aa, &bb, &cc);
            printf("%d
    ", cx(aa, bb, cc));
        }
        return 0;
    }
    

    数列分块入门 9

    题目传送门

    分析

    我们维护一个数组(f[l][r])为块(l)到块(r)之间的最小众数
    大区间直接带走,零碎区间暴力枚举+二分查找

    代码

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    #include <map>
    #include <vector>
    #include <cmath>
    using namespace std;
    const int maxn = 1e5 + 5;
    int f[4000][4005];
    inline int read() {
        int x = 0, f = 1;
        char ch = getchar();
        while (ch < '0' || ch > '9') {
            if (ch == '-')
                f = -1;
            ch = getchar();
        }
        while (ch >= '0' && ch <= '9') {
            x = (x << 1) + (x << 3) + (ch ^ 48);
            ch = getchar();
        }
        return x * f;
    }
    int a[maxn], shuyu[maxn], cntt, val[maxn], blo, n, cnt[maxn];
    map<int, int> mp;
    vector<int> g[maxn];
    void solve(int id) {
        memset(cnt, 0, sizeof(cnt));
        int mmax = 0, ans = 0;
        for (int i = (id - 1) * blo + 1; i <= n; i++) {
            cnt[a[i]]++;
            int p = shuyu[i];
            if (cnt[a[i]] > mmax || (cnt[a[i]] == mmax && val[ans] > val[a[i]])) {
                mmax = cnt[a[i]];
                ans = a[i];
            }
            f[id][p] = ans;
        }
    }
    int cxx(int l, int r, int val) {
        return upper_bound(g[val].begin(), g[val].end(), r) - lower_bound(g[val].begin(), g[val].end(), l);
    }
    int cx(int l, int r) {
        int mmax = 0, ans = 0;
        for (int i = l; i <= min(r, shuyu[l] * blo); i++) {
            int now = cxx(l, r, a[i]);
            if (now > mmax || (now == mmax && val[ans] > val[a[i]])) {
                mmax = now;
                ans = a[i];
            }
        }
        if (shuyu[l] == shuyu[r])
            return ans;
        for (int i = r; i >= (shuyu[r] - 1) * blo + 1; i--) {
            int now = cxx(l, r, a[i]);
            if (now > mmax || (now == mmax && val[ans] > val[a[i]])) {
                mmax = now;
                ans = a[i];
            }
        }
        int noww = f[shuyu[l] + 1][shuyu[r] - 1];
        int kk = cxx(l, r, noww);
        if (kk > mmax || (kk == mmax && val[ans] > val[noww])) {
            mmax = kk;
            ans = noww;
        }
        return ans;
    }
    int main() {
        n = read();
        blo = 30;
        for (int i = 1; i <= n; i++) {
            shuyu[i] = (i - 1) / blo + 1;
            a[i] = read();
            if (!mp[a[i]]) {
                mp[a[i]] = ++cntt;
                val[cntt] = a[i];
            }
            a[i] = mp[a[i]];
            g[a[i]].push_back(i);
        }
        for (int i = 1; i <= shuyu[n]; i++) {
            solve(i);
        }
        for (int i = 1; i <= n; i++) {
            int l = read(), r = read();
            if (l > r)
                swap(l, r);
            printf("%d
    ", val[cx(l, r)]);
        }
        return 0;
    }
    
  • 相关阅读:
    如何读入位图(五)
    如何读入位图(四)
    绘制正弦曲线
    图像灰度均衡
    色彩填充及使用
    彩色扇形
    如何读入位图(三)
    ARCGIS FOR SILVERLIGHT Layer
    sqlserver2008多数据库操作(未完)
    SQLSERVER 2008 远程无法连接问题
  • 原文地址:https://www.cnblogs.com/liuchanglc/p/13510238.html
Copyright © 2011-2022 走看看