题目描述
分析
我们要找的是一段区间的和减去该区间的最大值能否被 (k) 整除
那么对于一段区间,我们可以先找出区间中的最大值
然后枚举最大值左边的后缀与最大值右边的前缀之和是否能被 (k) 整除
显然暴力枚举肯定会超时
所以我们可以用启发式合并的思想,只枚举长度较小的那一半,而在某种数据结构中查询另一半对应的值
查询的过程可以用主席树,但是常数巨大
其实我们可以对于每一个 (\%k) 后的前缀和开一个 (vector)
(vector) 中存放该值出现的位置
然后大力二分即可,复杂度和主席树相同
注意具体查的值要推一下式子
代码
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
#define rg register
inline int read(){
rg int x=0,fh=1;
rg char ch=getchar();
while(ch<'0' || ch>'9'){
if(ch=='-') fh=-1;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*fh;
}
const int maxn=3e5+5,maxm=1e6+5;
int n,k,a[maxn],sum[maxn],wz[maxn][22],ans,cnt[maxm],lg[maxn],b[maxn];
std::vector<int> g[maxm];
int cx(int l,int r){
rg int k=lg[r-l+1];
if(b[wz[l][k]]<b[wz[r-(1<<k)+1][k]]) return wz[r-(1<<k)+1][k];
else return wz[l][k];
}
int js(int id,int l,int r){
if(l>r || g[id].size()==0 || g[id][g[id].size()-1]<l) return 0;
return std::upper_bound(g[id].begin(),g[id].end(),r)-std::lower_bound(g[id].begin(),g[id].end(),l);
}
void solve(int l,int mids,int r){
if(l>mids || r<mids) return;
solve(l,cx(l,mids-1),mids-1);
solve(mids+1,cx(mids+1,r),r);
if(mids-l<r-mids){
for(rg int i=l;i<=mids;i++){
rg int now=(sum[i-1]+a[mids])%k;
ans+=js(now,mids+1,r);
}
ans+=js(sum[mids-1],l-1,mids-2);
} else {
for(rg int i=mids;i<=r;i++){
rg int now=(sum[i]-a[mids]+k)%k;
ans+=js(now,l-1,mids-2);
}
ans+=js(sum[mids],mids+1,r);
}
}
int main(){
n=read(),k=read();
for(rg int i=1;i<=n;i++){
a[i]=read();
b[i]=a[i];
a[i]%=k;
wz[i][0]=i;
}
for(rg int i=1;i<=n;i++){
sum[i]=sum[i-1]+a[i];
if(sum[i]>=k) sum[i]-=k;
g[sum[i]].push_back(i);
}
for(rg int i=2;i<=n;i++){
lg[i]=lg[i/2]+1;
}
for(rg int j=1;j<=20;j++){
for(rg int i=1;i+(1<<j)-1<=n;i++){
if(b[wz[i][j-1]]>b[wz[i+(1<<(j-1))][j-1]]){
wz[i][j]=wz[i][j-1];
} else {
wz[i][j]=wz[i+(1<<(j-1))][j-1];
}
}
}
g[0].push_back(0);
for(rg int i=0;i<k;i++){
std::sort(g[i].begin(),g[i].end());
}
rg int be=cx(1,n);
solve(1,be,n);
printf("%d
",ans);
return 0;
}