二分查找
二分查找的前提
- 目标函数单调性(单调递增或者递减)
- 存在上下界(bounded)
- 能够通过索引访问(index accessible)
代码模块
left, right = 0, len(array) - 1
while left <= right:
mid = (left + right) / 2
if array[mid] == target:
# find the target!!
break or return result
elif array[mid] < target:
left = mid + 1
else:
right = mid - 1
在递增数组里
[10,14,19,26,27,31,33,35,42,44]
查找:31
10,14,19,26,27,31,33,35,42,44
0 1 2 3 4 5 6 7 8 9
取中间4 往后5~9取7 5~7取6 5~6取5得出最终结果
//二分法
class Solution {
public:
int mySqrt(int x) {
long long i=0;
long long j=x/2+1;
while(i<=j)
{
long long mid=(i+j)/2;
long long res=mid*mid;
if(res==x) return mid;
else if(res<x) i=mid+1;
else j=mid-1;
}
return j;
}
};
//牛顿迭代法
class Solution {
public:
int mySqrt(int x) {
if(x==0) return 0;
double last=0;
double res=1;
while(last!=res)
{
last=res;
res=(res+x/res)/2;
}
return int(res);
}
};
//数字累加求平方比较相等返回真值
class Solution {
public:
bool isPerfectSquare(int num) {
int i=1;
long n=i*i;
while(n<=num)
{
if(num==n)
return true;
else
{
i++;
n=pow(i,2);
}
}
return false;
}
};
//公式法1=1 4=1+3 9=1+3+5
class Solution {
public:
bool isPerfectSquare(int num) {
int i=1;
while(num>0)
{
num-=i;
i+=2;
}
return num==0;
}
};
//二分法
class Solution {
public:
bool isPerfectSquare(int num) {
int start=1;
int end=num;
int mid=start+(end-start)/2;
while(start<=end)
{
if(pow(mid,2)>num)
{
end=mid-1;
}
else if(pow(mid,2)<num)
{
start=mid+1;
}
else return true;
mid=(end-start)/2+start;
}
return false;
}
};