zoukankan      html  css  js  c++  java
  • 计算图像数据集RGB各通道的均值和方差

    第一种写法,先读进来,再计算。比较耗内存。

    import cv2
    import numpy as np
    import torch 
    
    startt = 700
    CNum = 100   # 挑选多少图片进行计算
    imgs=[]
    for i in range(startt, startt+CNum):
        img_path = os.path.join(root_path, filename[i])
        img = cv2.imread(img_path)
        img = img[:, :, :, np.newaxis]
        imgs.append(torch.Tensor(img))
    
    torch_imgs = torch.cat(imgs, dim=3)
    
    means, stdevs = [], []
    for i in range(3):
        pixels = torch_imgs[:, :, i, :]  # 拉成一行
        means.append(torch.mean(pixels))
        stdevs.append(torch.std(pixels))
    
    # cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转
    means.reverse()  # BGR --> RGB
    stdevs.reverse()
    
    print("normMean = {}".format(means))
    print("normStd = {}".format(stdevs))
    

      

    第二种写法,读一张算一张,比较耗时:先过一遍计算出均值,再过一遍计算出方差。

    import os
    from PIL import Image
    import matplotlib.pyplot as plt
    import numpy as np
    from scipy.misc import imread
    
    startt = 4000
    CNum = 1000   # 挑选多少图片进行计算
    num = 1000 * 3200 * 1800  # 这里(3200,1800)是每幅图片的大小,所有图片尺寸都一样
    
    imgs=[]
    R_channel = 0
    G_channel = 0
    B_channel = 0
    for i in range(startt, startt+CNum):
        img = imread(os.path.join(root_path, filename[i]))
        R_channel = R_channel + np.sum(img[:, :, 0])
        G_channel = G_channel + np.sum(img[:, :, 1])
        B_channel = B_channel + np.sum(img[:, :, 2])
    
    R_mean = R_channel / num
    G_mean = G_channel / num
    B_mean = B_channel / num
    
    R_channel = 0
    G_channel = 0
    B_channel = 0
    for i in range(startt, startt+CNum):
        img = imread(os.path.join(root_path, filename[i]))
        R_channel = R_channel + np.sum(np.power(img[:, :, 0]-R_mean, 2) )
        G_channel = G_channel + np.sum(np.power(img[:, :, 1]-G_mean, 2) )
        B_channel = B_channel + np.sum(np.power(img[:, :, 2]-B_mean, 2) )
    
    R_std = np.sqrt(R_channel/num)
    G_std = np.sqrt(G_channel/num)
    B_std = np.sqrt(B_channel/num)
    
    # R:65.045966   G:70.3931815    B:78.0636285
    print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
    print("R_std is %f, G_std is %f, B_std is %f" % (R_std, G_std, B_std))
    

      

    第三种写法,只需要遍历一次:在一轮循环中计算出x,x^2;  然后x'=sum(x)/N ,又有sum(x^2),根据下式:

    S^2
    = sum((x-x')^2 )/N = sum(x^2+x'^2-2xx')/N
    = {sum(x^2) + sum(x'^2) - 2x'*sum(x) }/N
    = {sum(x^2) + N*(x'^2) - 2x'*(N*x') }/N
    = {sum(x^2) - N*(x'^2) }/N
    = sum(x^2)/N - x'^2

    S = sqrt( sum(x^2)/N - (sum(x)/N )^2   )

    可以知道,只需要经过一次遍历,就可以计算出数据集的均值和方差。

    import os
    from PIL import Image
    import matplotlib.pyplot as plt
    import numpy as np
    from scipy.misc import imread
    
    startt = 5000
    CNum = 1000   # 挑选多少图片进行计算
    R_channel = 0
    G_channel = 0
    B_channel = 0
    R_channel_square = 0
    G_channel_square = 0
    B_channel_square = 0
    pixels_num = 0
    
    imgs = []
    for i in range(startt, startt+CNum):
        img = imread(os.path.join(root_path, filename[i]))
        h, w, _ = img.shape
        pixels_num += h*w       # 统计单个通道的像素数量
    
        R_temp = img[:, :, 0]
        R_channel += np.sum(R_temp)
        R_channel_square += np.sum(np.power(R_temp, 2.0))
        G_temp = img[:, :, 1]
        G_channel += np.sum(G_temp)
        G_channel_square += np.sum(np.power(G_temp, 2.0))
        B_temp = img[:, :, 2]
        B_channel = B_channel + np.sum(B_temp)
        B_channel_square += np.sum(np.power(B_temp, 2.0))
    
    R_mean = R_channel / pixels_num
    G_mean = G_channel / pixels_num
    B_mean = B_channel / pixels_num
    
    """   
    S^2
    = sum((x-x')^2 )/N = sum(x^2+x'^2-2xx')/N
    = {sum(x^2) + sum(x'^2) - 2x'*sum(x) }/N
    = {sum(x^2) + N*(x'^2) - 2x'*(N*x') }/N
    = {sum(x^2) - N*(x'^2) }/N
    = sum(x^2)/N - x'^2
    """
    
    R_std = np.sqrt(R_channel_square/pixels_num - R_mean*R_mean)
    G_std = np.sqrt(G_channel_square/pixels_num - G_mean*G_mean)
    B_std = np.sqrt(B_channel_square/pixels_num - B_mean*B_mean)
    
    print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
    print("R_std is %f, G_std is %f, B_std is %f" % (R_std, G_std, B_std))
    

      

  • 相关阅读:
    权值线段树 学习笔记
    Codeforces Round #585 (Div. 2)
    a题解
    01Trie学习笔记
    学习笔记--线段树合并与分裂
    [NOIP10.6模拟赛]1.merchant题解--思维+二分
    [NOIP10.6模拟赛]2.equation题解--DFS序+线段树
    [NOIP10.5模拟赛]1.a题解--离散化+异或线段树
    [NOIP10.5模拟赛]3.c题解--思维
    [NOIP10.3模拟赛]3.w题解--神奇树形DP
  • 原文地址:https://www.cnblogs.com/liugl7/p/10874958.html
Copyright © 2011-2022 走看看