zoukankan      html  css  js  c++  java
  • 直方图绘图与直方图的均衡化、规定化

    1.使用imhist()函数求图片直方图的时候,如果是RGB彩色图,则要首先调用rgb2gray()函数将其转化为灰度图。

    eg:

    1 ImageData=imread('baby.jpg');
    2 I=rgb2gray(ImageData );
    3 figure(1);
    4 subplot(2,1,1);
    5 imshow(ImageData);
    6 subplot(2,1,2);
    7 imshow(I);
    8 figure(2);
    9 imhist(uint8(I) );
    View Code

    执行结果如下:

    2.bar可以用作绘制条状图、stem()函数绘制杆状图、plot()函数用来绘制图像最常见。

    {

    linspace()函数:

    令A=linspace(1,100) 回车:然后会看到结果生成的是1到100之间的整数,一共100个数字,我们可以看到默认情况下linspace(a1,a2) 是生成包括a1 a2在内的等差数组。

    linspace(a1,a2,N) 此函数是用来生成a1与a2之间等距的数组,间距d=(a2-a1)/(N-1)。例如B=linspace(0,9,9)我们可以看到结果如下: 

    B =

             0    1.1250    2.2500    3.3750    4.5000    5.6250    6.7500    7.8750    9.0000

    因为间距d = 1.125=(9-0)/(9-1)。

    }

    {

    stem()函数:

    stem(horz, z, 'fill')中,'fill'参数用来指示杆状图的标记点的颜色和线条的颜色,fill指示默认的‘蓝色,实线,圆’。如果换成‘r--p’就变成了'红色,虚线,五角星形'。详细的参数表格见《数字图像处理(MATLAB版)》P35。

    }

     1 ImageData=imread('baby.jpg');
     2 f=rgb2gray(ImageData );
     3 figure(1);
     4 imhist(f);                  %最原始的结果
     5 
     6 figure(2);
     7 h = imhist(f,25);
     8 horz = linspace(0,255,25);
     9 bar(horz,h)                 %条形统计图
    10 axis([0 255 0 60000] )
    11 set(gca,'xtick',0:50:255)
    12 set(gca,'ytick',0:20000:60000)
    13 
    14 figure(3);
    15 stem(horz,h,'fill');        %杆状图
    16 axis([0 255 0 60000])
    17 set(gca,'xtick',0:50:255)
    18 set(gca,'ytick',0:20000:60000)
    19 
    20 figure(4);
    21 plot(imhist(f));            
    22 axis([0 255 0 15000])
    23 set(gca,'xtick',0:50:255)
    24 set(gca,'ytick',0:20000:60000)
    View Code

    结果如下图:

     3.直方图均衡。g= histeq(f,nlev),f为输入图像,nlev为输出图像设定的灰度级数,默认为64。

     1 %{
     2 ImageData=imread('test.tif');
     3 f=rgb2gray(ImageData );
     4 %}
     5 clear,clc;
     6 close all;
     7 f = imread('test.tif');  
     8 figure,imhist(f);                  %最原始的结果
     9 title('原图像直方图');
    10 ylim('auto');
    11 g = histeq(f,256);
    12 figure,imshow(g) 
    13 title('均衡化处理后的图像');
    14 figure,imhist(g)
    15 title('均衡化后的直方图');
    16 ylim('auto');
    17 
    18 hnorm = imhist(f)./numel(f);
    19 cdf = cumsum(hnorm);
    20 x = linspace(0,1,256);
    21 figure,plot(x,cdf);
    22 title('变换函数');
    23 axis([0 1 0 1]);
    24 set(gca,'xtick',0:.2:1)
    25 set(gca,'ytick',0:.2:1)
    26 xlabel('Input intensity values','fontsize',9);
    27 ylabel('Output intensity values','fontsize',9);
    View Code

    执行后结果为:

    4.直方图规定化(自定义规定函数)

    1 f = imread('test.tif'); %读入原图像
    2 p = manualhist;         %输入规定直方图
    3 g= histeq(f,p);         %调用histeq函数得到得到规定化直方图
    4 figure,imhist(g);       %显示规定化后的直方图

    如代码中所示,manualhist函数用来得到规定化直方图,并画出图像。 twomodegauss用来计算一个归一化到单位区域的双模态高斯函数。

    manualhist函数为:

     1 function p = manualhist
     2 %MANUALHIST Generates a two-mode histogram interactively.
     3 %   P = MANUALHIST generates a two-mode histogram using
     4 %   TWOMODEGAUSS(m1, sig1, m2, sig2, A1, A2, k).  m1 and m2 are the
     5 %   means of the two modes and must be in the range [0,1].  sig1 and
     6 %   sig2 are the standard deviations of the two modes.  A1 and A2 are 
     7 %   amplitude values, and k is an offset value that raised the
     8 %   "floor" of histogram.  The number of elements in the histogram
     9 %   vector P is 256 and sum(P) is normalized to 1.  MANUALHIST
    10 %   repeatedly prompts for the parameters and plots the resulting
    11 %   histogram until the user types an 'x' to quit, and then it returns
    12 %   the last histogram computed.
    13 %
    14 %   A good set of starting values is: (0.15, 0.05, 0.75, 0.05, 1,
    15 %   0.07, 0.002).  
    16 
    17 % Initialize.
    18 repeats = true;
    19 quitnow = 'x';
    20 
    21 % Compute a default histogram in case the user quits before
    22 % estimating at least one histogram. 
    23 p = twomodegauss(0.15, 0.05, 0.75, 0.05, 1, 0.07, 0.002);
    24 
    25 % Cycle until an x is input.
    26 while repeats  
    27    s = input('Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:','s');
    28    if s == quitnow 
    29       break
    30    end
    31    
    32    % Convert the input string to a vector of numerical values and
    33    % verify the number of inputs.
    34    v = str2num(s);
    35    if numel(v) ~= 7
    36       disp('Incorrect number of inputs')
    37       continue
    38    end
    39    
    40    p = twomodegauss(v(1), v(2), v(3), v(4), v(5), v(6), v(7));
    41    % Start a new figure and scale the axes. Specifying only xlim
    42    % leaves ylim on auto. 
    43    figure, plot(p)
    44    xlim([0 255])
    45 end
    View Code
     1 function p = twomodegauss(m1, sig1, m2, sig2, A1, A2, k)
     2 %TWOMODEGAUSS Generates a two-mode Gaussian function.
     3 %   P = TWOMODEGAUSS(M1, SIG1, M2, SIG2, A1, A2, K) generates a
     4 %   two-mode, Gaussian-like function in the interval [0,1].  P is a
     5 %   256-element vector normalized so that SUM(P) equals 1.  The mean
     6 %   and standard deviation of the modes are (M1, SIG1) and (M2,
     7 %   SIG2), respectively. A1 and A2 are the amplitude values of the
     8 %   two modes.  Since the output is normalized, only the relative
     9 %   values of A1 and A2 are important.  K is an offset value that
    10 %   raises the "floor" of the function.  A good set of values to try
    11 %   is M1=0.15, S1=0.05, M2=0.75, S2=0.05, A1=1, A2=0.07, and
    12 %   K=0.002.
    13 
    14 %   Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
    15 %   Digital Image Processing Using MATLAB, Prentice-Hall, 2004
    16 %   $Revision: 1.6 $  $Date: 2003/10/13 00:54:47 $
    17 
    18 c1 = A1 * (1 / ((2 * pi) ^ 0.5) * sig1);
    19 k1 = 2 * (sig1 ^ 2);
    20 c2 = A2 * (1 / ((2 * pi) ^ 0.5) * sig2);
    21 k2 = 2 * (sig2 ^ 2);
    22 z  = linspace(0, 1, 256);
    23 
    24 p = k + c1 * exp(-((z - m1) .^ 2) ./ k1) + ...
    25     c2 * exp(-((z - m2) .^ 2) ./ k2);
    26 p = p ./ sum(p(:));
    twomodegauss

    执行结果为:

    5.函数adapthisteq():自适应直方图均衡,这种方法用直方图匹配的方法来逐个处理图像中的较小区域。然后用双线性内插的方法来逐个将相邻的小片组合起来,从而消除人工引入的边界。特别是在均匀灰度区域,可以限制对比度来避免放大噪声。adapthisteq的语法是g = adapthisteq(f,param1,val1,param2,val2,...);

    eg:

     1 clear,clc;
     2 close all;
     3 f = imread('test.tif'); %读入原图像
     4 imhist(f);
     5 
     6 g1 = adapthisteq(f);
     7 figure,imhist(g1);
     8 
     9 g2 = adapthisteq(f,'NumTiles',[25,25], 'ClipLimit',0.05 );
    10 figure,imhist(g2);
    View Code

    得到的结果如下:很明显,均衡化处理的结果越来越好:

  • 相关阅读:
    Enum, Generic and Templates
    Writing A Threadpool in Rust
    A First Look at Rust Language
    Closures in OOC
    Complexity Behind Closure
    Introduction to OOC Programming Language
    OOC,泛型,糟糕的设计。
    Enlightenment笔记
    Machine Learning/Random Projection
    Machine Learning/Introducing Logistic Function
  • 原文地址:https://www.cnblogs.com/liugl7/p/5294114.html
Copyright © 2011-2022 走看看