zoukankan      html  css  js  c++  java
  • 数值分析--第三章--迭代法

    迭代一般方程:

     本文实例方程组: 

    一.jacobi迭代法

    从第i个方程组解出xi。

     线性方程组Ax=b,先给定一组x的初始值,如[0,0,0],第一次迭代,用x2=0,x3=0带入第一个式子得到x1的第一次迭代结果,用x1=0,x3=0,带入第二个式子得到x2的第一次迭代结果,用x1=0,x2=0带入第三个式子得到x3的第一次迭代结果。得到第一次的x后,重复第一次的运算。

    转化成一般的形式:(其中L是A的下三角部分,D是A的对角元素部分,U 是上三角部分)

    得到迭代公式:

    其中的矩阵B和向量f如何求得呢?

    其实,矩阵B的计算也很简单,就是每行的元素/该行上的对角元素

     二.Gauss-Seidel迭代法【收敛速度更快】

    这个可以和jacobi法对比进行理解,我们以第二次迭代为例(这里的第一次迭代结果都用一样的,懒得去换)

       从上表对比结果可以看出,Jacobi方法的第二次迭代的时候,都是从第一次迭代结果中,获取输入值。

    上一次迭代结果[2.5,3.0,3.0],将这个结果带入上面式子1,得到x1=2.88,;将[2.5,3.0,3.0]替换成[2.88,3.0,3.0]带入第二个式子的运算,这里得到x2=1.95,所以把[2.88,3.0,3.0]替换成[2.88,1.95,3.0]输入第三个式子计算X3=1.0.这就完成了这一次的迭代,得到迭代结果[2.88,1.95,1.0],基于这个结果,开始下一次迭代。

    特点:jacobi迭代法,需要存储,上一次的迭代结果,也要存储这一次的迭代结果,所以需要两组存储单元。

      而Gauss-Seidel迭代法,每一次迭代得到的每一个式子得到的值,替换上一次迭代结果中的值即可。所以只需要一组存储单元。

     转化成一般式:

    注意:第二个式子中的是k+1次迭代的第一个式子的值,不是第k次迭代得值。

    计算过程同jacobi迭代法的类似

    三.逐次超松弛法SOR法

    上面仅仅通过实例说明,Jacobi和Seidel迭代的运算过程。并没有构造其一般的计算公式。

    Gauss-Seidel迭代法的一般公式:

    .......................式1.1

     对于这个公式,怎么看着都比较别扭,分解一下就是

     将式1.1改写:

     .......................式1.2

    同样分解一下:

    注意:左侧的x是本次(k+1)需要求的迭代结果,右侧的x是上次(k)的迭代结果。 

    .......................式1.3

     .......................式1.4

    分解一下:

    松弛因子,当松弛因子=1时,就是seidel迭代法,当调节松弛因子时,可以加快或减缓迭代速度。(和深度学习中的学习因子一个意思)

     改写成矩阵形式:

    对矩阵公式进行实例化分解之后,能够直观的理解,这个公式。

    四.迭代的收敛条件

    从上面的实例,不断的迭代,最终可以获得需要的解。这是在给点的线性方程组的迭代方程收敛。当然,也存在不收敛的情况,最终得不到正确的解。

    其中:

    谱半径:

    1范数:

     ∞范数:

     严格对角占优:

    正定(顺序主子式都>0):

    误差限:

    其中范数||B||<1

  • 相关阅读:
    Spring cloud实现服务注册及发现
    使用spring cloud实现分布式配置管理
    spring cloud教程之使用spring boot创建一个应用
    7天学会spring cloud教程
    微服务开发的12项要素
    一句话概括下spring框架及spring cloud框架主要组件
    翻译-服务注册与发现
    翻译-微服务API Gateway
    微服务分布式事务的一些思考
    解决不能正常访问workerman的问题
  • 原文地址:https://www.cnblogs.com/liuhuacai/p/12884151.html
Copyright © 2011-2022 走看看