内核模块基础:
1 可以通过编译进内核和动态加载内核模块来将驱动模块加载,调试过程中后者比较常用。
2 相关命令: insmod rmmod modinfo lsmod dmesg modinfo cat /proc/devices cat /proc/moduls
3 内核模块程序结构:
1 模块加载函数 --- module_init (initial_function) 其中initial_functon 常用__init修饰
2 模块卸载函数 --- module_exit (cleanup_function) 其中cleanup_functon 常用__exit修饰
3 模块许可声明 (必须) --- MODULE_LICENSE ("DUAL BSD/GPL");
4 模块参数(可选)--- module_param
5 模块导出符号 (可选)--- EXPORT_SYMBOL (add_interger);
6 模块作者等信息声明(可选)--- MODULE_AUTHOR MODULE_DEVICE_TABLE 等
4 内核模块的编译,简单示例如
##一定要注意内核版本与交叉编译工具链相一致,此处的内核目录是目标板的源码目录 obj-m += hello-ioctl.o ##多文件时加一句 modulename-objs := file1.o file2.o ARCH ?= arm CROSS_COMPILE ?= arm-linux- KERNELDIR := /source/kernel/linux-2.6.35 all: make -C $(KERNELDIR) M=$(PWD) modules clean: make -C $(KERNELDIR) M=$(PWD) clean
字符设备驱动:
一个字符设备驱动主要由驱动加载与卸载函数 和 file_operations结构体中成员函数组成。
加载模块中主要完成设备号的申请和cdev的注册,而在卸载函数中英实现设备号与cdev的注销。
file_operations结构体成员函数是字符设备驱动与内核的接口,大多数字符设备驱动都会实现
read(), write()和ioctl()函数。
下面使用一个虚拟的globalmem设备来说明字符设备驱动的编写过程:
#include <linux/module.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/cdev.h> #include <asm/io.h> #include <asm/system.h> #include <asm/uaccess.h> #include <linux/slab.h>//for kfree #include <linux/kernel.h> #define GLOBALMEM_SIZE 0x1000 #define MEM_CLEAR 0x1 #define GLOBALMEM_MAJOR 250 #define GLOBALMEM_MAGIC 'j' //for the command of ioctl #define MEM_CLEAN_IO (GLOBALMEM_MAGIC, 0) static int globalmem_major = GLOBALMEM_MAJOR; struct globalmem_dev { struct cdev cdev; unsigned char mem[GLOBALMEM_SIZE]; }; struct globalmem_dev *globalmem_devp; //use the private_data for more than one device int globalmem_open (struct inode *inode, struct file *filp) { struct globalmem_dev *dev; dev = container_of (inode->i_cdev, struct globalmem_dev, cdev); filp->private_data = dev; return 0; } int globalmem_release (struct inode *inode, struct file *filp) { return 0; } static ssize_t globalmem_read (struct file *filp, char __user *buf, size_t size, loff_t *ppos) { unsigned long p = *ppos; unsigned int count = size; int ret = 0; struct globalmem_dev *dev = filp->private_data; if (p >= GLOBALMEM_SIZE) return 0; if (count > GLOBALMEM_SIZE - p) count = GLOBALMEM_SIZE - p; if (copy_to_user (buf, (void *) (dev->mem + p), count)) ret = -EFAULT; else { *ppos += count; ret = count; printk (KERN_INFO "read %d bytes(s) from %ld\n", count, p); } return ret; } static ssize_t globalmem_write (struct file *filp, const char __user *buf, size_t size, loff_t *ppos) { unsigned long p = *ppos; size_t count = size; int ret = 0; struct globalmem_dev *dev = filp->private_data; if (p >= GLOBALMEM_SIZE) return 0; if (count > GLOBALMEM_SIZE-p) count = GLOBALMEM_SIZE - p; if (copy_from_user (dev->mem+p, buf, count)) ret = -EFAULT; else { *ppos += count; ret = count; printk (KERN_INFO "written %d bytes from %ld\n", count, p); } return ret; } static loff_t globalmem_llseek (struct file *filp, loff_t offset, int orig) { loff_t ret; switch (orig) { case 0: if (offset < 0) { ret = -EINVAL; break; } if ((unsigned int)offset > GLOBALMEM_SIZE) { ret = -EINVAL; break; } filp->f_pos = (unsigned int) offset; ret = filp->f_pos; break; case 1: if ((filp->f_pos + offset) > GLOBALMEM_SIZE) { ret = -EINVAL; break; } if ((filp->f_pos + offset) < 0) { ret = -EINVAL; break; } filp->f_pos += offset; ret = filp->f_pos; break; default: ret = -EINVAL; } return ret; } static int globalmem_ioctl (struct inode *inodep, struct file *filp, unsigned int cmd, unsigned long arg) { struct globalmem_dev *dev = filp->private_data; switch (cmd) { case MEM_CLEAR: memset (dev->mem, 0, GLOBALMEM_SIZE); printk (KERN_INFO "globalmem is set to zero\n"); break; default: return -EINVAL; } return 0; } static const struct file_operations globalmem_fops = { .owner = THIS_MODULE, .llseek = globalmem_llseek, .read = globalmem_read, .write = globalmem_write, .ioctl = globalmem_ioctl, .open = globalmem_open, .release = globalmem_release, }; static void globalmem_setup_cdev (struct globalmem_dev *dev, int index) { int err; int devno = MKDEV (globalmem_major, 0); cdev_init (&dev->cdev, &globalmem_fops); dev->cdev.owner = THIS_MODULE; err = cdev_add (&dev->cdev, devno, 1); if (err) printk (KERN_NOTICE "Error %d adding globalmem", err); } int globalmem_init (void) { int result; dev_t devno = MKDEV (globalmem_major, 0); if (globalmem_major) result = register_chrdev_region (devno, 2, "globalmem"); else { result = alloc_chrdev_region (&devno, 0, 2, "globalmem"); globalmem_major = MAJOR (devno); } if (result < 0) return result; globalmem_devp = kmalloc (2 * sizeof (struct globalmem_dev), GFP_KERNEL); if (!globalmem_devp) { result = -ENOMEM; goto fail_malloc; //use goto for exception handling } memset (globalmem_devp, 0, 2 * sizeof (struct globalmem_dev)); globalmem_setup_cdev (&globalmem_devp[0], 0); globalmem_setup_cdev (&globalmem_devp[1], 1); return 0; fail_malloc: unregister_chrdev_region (devno, 1); return result; } void globalmem_exit (void) { cdev_del (&(globalmem_devp[0].cdev)); cdev_del (&(globalmem_devp[1].cdev)); kfree (globalmem_devp); unregister_chrdev_region (MKDEV (globalmem_major, 0), 2); } MODULE_AUTHOR ("ljia"); MODULE_LICENSE ("Dual BSD/GPL"); module_param (globalmem_major, int, S_IRUGO); module_init (globalmem_init); module_exit (globalmem_exit);