zoukankan      html  css  js  c++  java
  • pytorch搭建网络模型的4种方法

    import torch

    import torch.nn.functional as F
    from collections import OrderedDict
     
    # Method 1 -----------------------------------------
     
    class Net1(torch.nn.Module):
      def __init__(self):
        super(Net1, self).__init__()
        self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
        self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
        self.dense2 = torch.nn.Linear(128, 10)
     
      def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv(x)), 2)
        x = x.view(x.size(0), -1)
        x = F.relu(self.dense1(x))
        x = self.dense2()
        return x
     
    print("Method 1:")
    model1 = Net1()
    print(model1)
     
     
    # Method 2 ------------------------------------------
     
    class Net2(torch.nn.Module):
      def __init__(self):
        super(Net2, self).__init__()
        self.conv = torch.nn.Sequential(
          torch.nn.Conv2d(3, 32, 3, 1, 1),
          torch.nn.ReLU(),
          torch.nn.MaxPool2d(2))
        self.dense = torch.nn.Sequential(
          torch.nn.Linear(32 * 3 * 3, 128),
          torch.nn.ReLU(),
          torch.nn.Linear(128, 10)
        )
     
      def forward(self, x):
        conv_out = self.conv1(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out
     
    print("Method 2:")
    model2 = Net2()
    print(model2)
     
     
    # Method 3 -------------------------------
     
    class Net3(torch.nn.Module):
      def __init__(self):
        super(Net3, self).__init__()
        self.conv=torch.nn.Sequential()
        self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
        self.conv.add_module("relu1",torch.nn.ReLU())
        self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
        self.dense = torch.nn.Sequential()
        self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
        self.dense.add_module("relu2",torch.nn.ReLU())
        self.dense.add_module("dense2",torch.nn.Linear(128, 10))
     
      def forward(self, x):
        conv_out = self.conv1(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out
     
    print("Method 3:")
    model3 = Net3()
    print(model3)
     
     
     
    # Method 4 ------------------------------------------
     
    class Net4(torch.nn.Module):
      def __init__(self):
        super(Net4, self).__init__()
        self.conv = torch.nn.Sequential(
          OrderedDict(
            [
              ("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
              ("relu1", torch.nn.ReLU()),
              ("pool", torch.nn.MaxPool2d(2))
            ]
          ))
     
        self.dense = torch.nn.Sequential(
          OrderedDict([
            ("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
            ("relu2", torch.nn.ReLU()),
            ("dense2", torch.nn.Linear(128, 10))
          ])
        )
     
      def forward(self, x):
        conv_out = self.conv1(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out
     
    model4 = Net4()
    print("Method 4:")
    print(model4)
  • 相关阅读:
    Python中获取异常(Exception)信息
    python中的构造函数和析构函数
    windows下python检查文件是否被其它文件打开
    python怎样压缩和解压缩ZIP文件
    Python递归遍历《指定目录》下的所有《文件》
    HTML基础知识(w3school)
    关于c#除法运算的问题
    WPF如何给窗口Window增加阴影效果
    图片加载,创建事件监听
    版本回退的冲突问题
  • 原文地址:https://www.cnblogs.com/liujianing/p/12444469.html
Copyright © 2011-2022 走看看