http://poj.org/problem?id=1191
DP 一不小心开了个五维数组
double ans[k][x1][y1][x2][y2] 表示(x1,y1)到(x2,y2)可以割k次时与平均数最小平方和
代码:
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<cmath> #include<queue> #include<algorithm> #include<set> using namespace std; const int N=15; const double M=100000000.0; double ans[N][10][10][10][10]; double K; int sum[10][10][10][10]; int a[10][10]; int n; int dpsum(int x1,int y1,int x2,int y2)//求(x1,y1)到(x2,y2) 的和 { if(sum[x1][y1][x2][y2]!=-1) return sum[x1][y1][x2][y2]; if(x1==x2&&y1==y2) { sum[x1][y1][x2][y2]=a[x1][y1]; }else if(x1<x2) { sum[x1][y1][x2][y2]=dpsum(x1,y1,x1,y2)+dpsum(x1+1,y1,x2,y2); }else if(y1<y2) { sum[x1][y1][x2][y2]=dpsum(x1,y1,x2,y1)+dpsum(x1,y1+1,x2,y2); } return sum[x1][y1][x2][y2]; } double FFmin(double x,double y) { return (x<y)?x:y; } double dpans(int k,int x1,int y1,int x2,int y2) { if(ans[k][x1][y1][x2][y2]>=0.0) { return ans[k][x1][y1][x2][y2]; } if(k==0) { ans[k][x1][y1][x2][y2]=((sum[x1][y1][x2][y2]-K)*(sum[x1][y1][x2][y2]-K)); return ans[k][x1][y1][x2][y2]; } ans[k][x1][y1][x2][y2]=M; for(int x=x1;x<x2;++x) { ans[k][x1][y1][x2][y2]=FFmin(ans[k][x1][y1][x2][y2], (dpans(k-1,x1,y1,x,y2))+(sum[x+1][y1][x2][y2]-K)*(sum[x+1][y1][x2][y2]-K)); ans[k][x1][y1][x2][y2]=FFmin(ans[k][x1][y1][x2][y2], (dpans(k-1,x+1,y1,x2,y2))+(sum[x1][y1][x][y2]-K)*(sum[x1][y1][x][y2]-K)); } for(int y=y1;y<y2;++y) { ans[k][x1][y1][x2][y2]=FFmin(ans[k][x1][y1][x2][y2], (dpans(k-1,x1,y1,x2,y))+(sum[x1][y+1][x2][y2]-K)*(sum[x1][y+1][x2][y2]-K)); ans[k][x1][y1][x2][y2]=FFmin(ans[k][x1][y1][x2][y2], (dpans(k-1,x1,y+1,x2,y2))+(sum[x1][y1][x2][y]-K)*(sum[x1][y1][x2][y]-K)); } return ans[k][x1][y1][x2][y2]; } void begin(int n) { for(int i=0;i<n;++i) for(int l1=1;l1<=8;++l1) for(int l2=1;l2<=8;++l2) for(int l3=1;l3<=8;++l3) for(int l4=1;l4<=8;++l4) { ans[i][l1][l2][l3][l4]=-1.0; } for(int l1=1;l1<=8;++l1) for(int l2=1;l2<=8;++l2) for(int l3=1;l3<=8;++l3) for(int l4=1;l4<=8;++l4) { dpsum(l1,l2,l3,l4); } } int main() { while(scanf("%d",&n)!=EOF) { for(int i=1;i<=8;++i) { for(int j=1;j<=8;++j) { scanf("%d",&a[i][j]); } } memset(sum,-1,sizeof(sum)); begin(n); K=1.0*sum[1][1][8][8]/n; printf("%.3f\n",sqrt(1.0*dpans(n-1,1,1,8,8)/n)); } return 0; }