zoukankan      html  css  js  c++  java
  • BM板子

    BM线性递推

    玄学玩意

    struct LinearRecurrence
    {
        using int64 = long long;
        using vec = std::vector<int64>;
     
        static void extand(vec& a, size_t d, int64 value = 0)
        {
            if (d <= a.size()) return;
            a.resize(d, value);
        }
        static vec BerlekampMassey(const vec& s, int64 mod)
        {
            std::function<int64(int64)> inverse = [&](int64 a) {
                return a == 1 ? 1 : (int64)(mod - mod / a) * inverse(mod % a) % mod;
            };
            vec A = {1}, B = {1};
            int64 b = s[0];
            for (size_t i = 1, m = 1; i < s.size(); ++i, m++)
            {
                int64 d = 0;
                for (size_t j = 0; j < A.size(); ++j)
                {
                    d += A[j] * s[i - j] % mod;
                }
                if (!(d %= mod)) continue;
                if (2 * (A.size() - 1) <= i)
                {
                    auto temp = A;
                    extand(A, B.size() + m);
                    int64 coef = d * inverse(b) % mod;
                    for (size_t j = 0; j < B.size(); ++j)
                    {
                        A[j + m] -= coef * B[j] % mod;
                        if (A[j + m] < 0) A[j + m] += mod;
                    }
                    B = temp, b = d, m = 0;
                }
                else
                {
                    extand(A, B.size() + m);
                    int64 coef = d * inverse(b) % mod;
                    for (size_t j = 0; j < B.size(); ++j)
                    {
                        A[j + m] -= coef * B[j] % mod;
                        if (A[j + m] < 0) A[j + m] += mod;
                    }
                }
            }
            return A;
        }
        static void exgcd(int64 a, int64 b, int64& g, int64& x, int64& y)
        {
            if (!b)
                x = 1, y = 0, g = a;
            else
            {
                exgcd(b, a % b, g, y, x);
                y -= x * (a / b);
            }
        }
        static int64 crt(const vec& c, const vec& m)
        {
            int n = c.size();
            int64 M = 1, ans = 0;
            for (int i = 0; i < n; ++i) M *= m[i];
            for (int i = 0; i < n; ++i)
            {
                int64 x, y, g, tm = M / m[i];
                exgcd(tm, m[i], g, x, y);
                ans = (ans + tm * x * c[i] % M) % M;
            }
            return (ans + M) % M;
        }
        static vec ReedsSloane(const vec& s, int64 mod)
        {
            auto inverse = [](int64 a, int64 m) {
                int64 d, x, y;
                exgcd(a, m, d, x, y);
                return d == 1 ? (x % m + m) % m : -1;
            };
            auto L = [](const vec& a, const vec& b) {
                int da = (a.size() > 1 || (a.size() == 1 && a[0])) ? a.size() - 1 : -1000;
                int db = (b.size() > 1 || (b.size() == 1 && b[0])) ? b.size() - 1 : -1000;
                return std::max(da, db + 1);
            };
            auto prime_power = [&](const vec& s, int64 mod, int64 p, int64 e) {
                // linear feedback shift register mod p^e, p is prime
                std::vector<vec> a(e), b(e), an(e), bn(e), ao(e), bo(e);
                vec t(e), u(e), r(e), to(e, 1), uo(e), pw(e + 1);
                ;
                pw[0] = 1;
                for (int i = pw[0] = 1; i <= e; ++i) pw[i] = pw[i - 1] * p;
                for (int64 i = 0; i < e; ++i)
                {
                    a[i] = {pw[i]}, an[i] = {pw[i]};
                    b[i] = {0}, bn[i] = {s[0] * pw[i] % mod};
                    t[i] = s[0] * pw[i] % mod;
                    if (t[i] == 0)
                    {
                        t[i] = 1, u[i] = e;
                    }
                    else
                    {
                        for (u[i] = 0; t[i] % p == 0; t[i] /= p, ++u[i])
                            ;
                    }
                }
                for (size_t k = 1; k < s.size(); ++k)
                {
                    for (int g = 0; g < e; ++g)
                    {
                        if (L(an[g], bn[g]) > L(a[g], b[g]))
                        {
                            ao[g] = a[e - 1 - u[g]];
                            bo[g] = b[e - 1 - u[g]];
                            to[g] = t[e - 1 - u[g]];
                            uo[g] = u[e - 1 - u[g]];
                            r[g] = k - 1;
                        }
                    }
                    a = an, b = bn;
                    for (int o = 0; o < e; ++o)
                    {
                        int64 d = 0;
                        for (size_t i = 0; i < a[o].size() && i <= k; ++i)
                        {
                            d = (d + a[o][i] * s[k - i]) % mod;
                        }
                        if (d == 0)
                        {
                            t[o] = 1, u[o] = e;
                        }
                        else
                        {
                            for (u[o] = 0, t[o] = d; t[o] % p == 0; t[o] /= p, ++u[o])
                                ;
                            int g = e - 1 - u[o];
                            if (L(a[g], b[g]) == 0)
                            {
                                extand(bn[o], k + 1);
                                bn[o][k] = (bn[o][k] + d) % mod;
                            }
                            else
                            {
                                int64 coef = t[o] * inverse(to[g], mod) % mod * pw[u[o] - uo[g]] % mod;
                                int m = k - r[g];
                                extand(an[o], ao[g].size() + m);
                                extand(bn[o], bo[g].size() + m);
                                for (size_t i = 0; i < ao[g].size(); ++i)
                                {
                                    an[o][i + m] -= coef * ao[g][i] % mod;
                                    if (an[o][i + m] < 0) an[o][i + m] += mod;
                                }
                                while (an[o].size() && an[o].back() == 0) an[o].pop_back();
                                for (size_t i = 0; i < bo[g].size(); ++i)
                                {
                                    bn[o][i + m] -= coef * bo[g][i] % mod;
                                    if (bn[o][i + m] < 0) bn[o][i + m] -= mod;
                                }
                                while (bn[o].size() && bn[o].back() == 0) bn[o].pop_back();
                            }
                        }
                    }
                }
                return std::make_pair(an[0], bn[0]);
            };
     
            std::vector<std::tuple<int64, int64, int>> fac;
            for (int64 i = 2; i * i <= mod; ++i)
            {
                if (mod % i == 0)
                {
                    int64 cnt = 0, pw = 1;
                    while (mod % i == 0) mod /= i, ++cnt, pw *= i;
                    fac.emplace_back(pw, i, cnt);
                }
            }
            if (mod > 1) fac.emplace_back(mod, mod, 1);
            std::vector<vec> as;
            size_t n = 0;
            for (auto&& x : fac)
            {
                int64 mod, p, e;
                vec a, b;
                std::tie(mod, p, e) = x;
                auto ss = s;
                for (auto&& x : ss) x %= mod;
                std::tie(a, b) = prime_power(ss, mod, p, e);
                as.emplace_back(a);
                n = std::max(n, a.size());
            }
            vec a(n), c(as.size()), m(as.size());
            for (size_t i = 0; i < n; ++i)
            {
                for (size_t j = 0; j < as.size(); ++j)
                {
                    m[j] = std::get<0>(fac[j]);
                    c[j] = i < as[j].size() ? as[j][i] : 0;
                }
                a[i] = crt(c, m);
            }
            return a;
        }
     
        LinearRecurrence(const vec& s, const vec& c, int64 mod) : init(s), trans(c), mod(mod), m(s.size()) {}
        LinearRecurrence(const vec& s, int64 mod, bool is_prime = true) : mod(mod)
        {
            vec A;
            if (is_prime)
                A = BerlekampMassey(s, mod);
            else
                A = ReedsSloane(s, mod);
            if (A.empty()) A = {0};
            m = A.size() - 1;
            trans.resize(m);
            for (int i = 0; i < m; ++i)
            {
                trans[i] = (mod - A[i + 1]) % mod;
            }
            std::reverse(trans.begin(), trans.end());
            init = {s.begin(), s.begin() + m};
        }
        int64 calc(int64 n)
        {
            if (mod == 1) return 0;
            if (n < m) return init[n];
            vec v(m), u(m << 1);
            int msk = !!n;
            for (int64 m = n; m > 1; m >>= 1) msk <<= 1;
            v[0] = 1 % mod;
            for (int x = 0; msk; msk >>= 1, x <<= 1)
            {
                std::fill_n(u.begin(), m * 2, 0);
                x |= !!(n & msk);
                if (x < m)
                    u[x] = 1 % mod;
                else
                { // can be optimized by fft/ntt
                    for (int i = 0; i < m; ++i)
                    {
                        for (int j = 0, t = i + (x & 1); j < m; ++j, ++t)
                        {
                            u[t] = (u[t] + v[i] * v[j]) % mod;
                        }
                    }
                    for (int i = m * 2 - 1; i >= m; --i)
                    {
                        for (int j = 0, t = i - m; j < m; ++j, ++t)
                        {
                            u[t] = (u[t] + trans[j] * u[i]) % mod;
                        }
                    }
                }
                v = {u.begin(), u.begin() + m};
            }
            int64 ret = 0;
            for (int i = 0; i < m; ++i)
            {
                ret = (ret + v[i] * init[i]) % mod;
            }
            return ret;
        }
     
        vec init, trans;
        int64 mod;
        int m;
    };
    接口: LinearRecurrence solver(f, mod, false);//f前若干项vector,mod模数,最后一个是否为质数
    solver.calc(n);//计算第n项

    The power of Fibonacci

    #include<bits/stdc++.h>
    
    struct LinearRecurrence
    {
        using int64 = long long;
        using vec = std::vector<int64>;
    
        static void extand(vec& a, size_t d, int64 value = 0)
        {
            if (d <= a.size()) return;
            a.resize(d, value);
        }
        static vec BerlekampMassey(const vec& s, int64 mod)
        {
            std::function<int64(int64)> inverse = [&](int64 a) {
                return a == 1 ? 1 : (int64)(mod - mod / a) * inverse(mod % a) % mod;
            };
            vec A = {1}, B = {1};
            int64 b = s[0];
            for (size_t i = 1, m = 1; i < s.size(); ++i, m++)
            {
                int64 d = 0;
                for (size_t j = 0; j < A.size(); ++j)
                {
                    d += A[j] * s[i - j] % mod;
                }
                if (!(d %= mod)) continue;
                if (2 * (A.size() - 1) <= i)
                {
                    auto temp = A;
                    extand(A, B.size() + m);
                    int64 coef = d * inverse(b) % mod;
                    for (size_t j = 0; j < B.size(); ++j)
                    {
                        A[j + m] -= coef * B[j] % mod;
                        if (A[j + m] < 0) A[j + m] += mod;
                    }
                    B = temp, b = d, m = 0;
                }
                else
                {
                    extand(A, B.size() + m);
                    int64 coef = d * inverse(b) % mod;
                    for (size_t j = 0; j < B.size(); ++j)
                    {
                        A[j + m] -= coef * B[j] % mod;
                        if (A[j + m] < 0) A[j + m] += mod;
                    }
                }
            }
            return A;
        }
        static void exgcd(int64 a, int64 b, int64& g, int64& x, int64& y)
        {
            if (!b)
                x = 1, y = 0, g = a;
            else
            {
                exgcd(b, a % b, g, y, x);
                y -= x * (a / b);
            }
        }
        static int64 crt(const vec& c, const vec& m)
        {
            int n = c.size();
            int64 M = 1, ans = 0;
            for (int i = 0; i < n; ++i) M *= m[i];
            for (int i = 0; i < n; ++i)
            {
                int64 x, y, g, tm = M / m[i];
                exgcd(tm, m[i], g, x, y);
                ans = (ans + tm * x * c[i] % M) % M;
            }
            return (ans + M) % M;
        }
        static vec ReedsSloane(const vec& s, int64 mod)
        {
            auto inverse = [](int64 a, int64 m) {
                int64 d, x, y;
                exgcd(a, m, d, x, y);
                return d == 1 ? (x % m + m) % m : -1;
            };
            auto L = [](const vec& a, const vec& b) {
                int da = (a.size() > 1 || (a.size() == 1 && a[0])) ? a.size() - 1 : -1000;
                int db = (b.size() > 1 || (b.size() == 1 && b[0])) ? b.size() - 1 : -1000;
                return std::max(da, db + 1);
            };
            auto prime_power = [&](const vec& s, int64 mod, int64 p, int64 e) {
                // linear feedback shift register mod p^e, p is prime
                std::vector<vec> a(e), b(e), an(e), bn(e), ao(e), bo(e);
                vec t(e), u(e), r(e), to(e, 1), uo(e), pw(e + 1);
                ;
                pw[0] = 1;
                for (int i = pw[0] = 1; i <= e; ++i) pw[i] = pw[i - 1] * p;
                for (int64 i = 0; i < e; ++i)
                {
                    a[i] = {pw[i]}, an[i] = {pw[i]};
                    b[i] = {0}, bn[i] = {s[0] * pw[i] % mod};
                    t[i] = s[0] * pw[i] % mod;
                    if (t[i] == 0)
                    {
                        t[i] = 1, u[i] = e;
                    }
                    else
                    {
                        for (u[i] = 0; t[i] % p == 0; t[i] /= p, ++u[i])
                            ;
                    }
                }
                for (size_t k = 1; k < s.size(); ++k)
                {
                    for (int g = 0; g < e; ++g)
                    {
                        if (L(an[g], bn[g]) > L(a[g], b[g]))
                        {
                            ao[g] = a[e - 1 - u[g]];
                            bo[g] = b[e - 1 - u[g]];
                            to[g] = t[e - 1 - u[g]];
                            uo[g] = u[e - 1 - u[g]];
                            r[g] = k - 1;
                        }
                    }
                    a = an, b = bn;
                    for (int o = 0; o < e; ++o)
                    {
                        int64 d = 0;
                        for (size_t i = 0; i < a[o].size() && i <= k; ++i)
                        {
                            d = (d + a[o][i] * s[k - i]) % mod;
                        }
                        if (d == 0)
                        {
                            t[o] = 1, u[o] = e;
                        }
                        else
                        {
                            for (u[o] = 0, t[o] = d; t[o] % p == 0; t[o] /= p, ++u[o])
                                ;
                            int g = e - 1 - u[o];
                            if (L(a[g], b[g]) == 0)
                            {
                                extand(bn[o], k + 1);
                                bn[o][k] = (bn[o][k] + d) % mod;
                            }
                            else
                            {
                                int64 coef = t[o] * inverse(to[g], mod) % mod * pw[u[o] - uo[g]] % mod;
                                int m = k - r[g];
                                extand(an[o], ao[g].size() + m);
                                extand(bn[o], bo[g].size() + m);
                                for (size_t i = 0; i < ao[g].size(); ++i)
                                {
                                    an[o][i + m] -= coef * ao[g][i] % mod;
                                    if (an[o][i + m] < 0) an[o][i + m] += mod;
                                }
                                while (an[o].size() && an[o].back() == 0) an[o].pop_back();
                                for (size_t i = 0; i < bo[g].size(); ++i)
                                {
                                    bn[o][i + m] -= coef * bo[g][i] % mod;
                                    if (bn[o][i + m] < 0) bn[o][i + m] -= mod;
                                }
                                while (bn[o].size() && bn[o].back() == 0) bn[o].pop_back();
                            }
                        }
                    }
                }
                return std::make_pair(an[0], bn[0]);
            };
    
            std::vector<std::tuple<int64, int64, int>> fac;
            for (int64 i = 2; i * i <= mod; ++i)
            {
                if (mod % i == 0)
                {
                    int64 cnt = 0, pw = 1;
                    while (mod % i == 0) mod /= i, ++cnt, pw *= i;
                    fac.emplace_back(pw, i, cnt);
                }
            }
            if (mod > 1) fac.emplace_back(mod, mod, 1);
            std::vector<vec> as;
            size_t n = 0;
            for (auto&& x : fac)
            {
                int64 mod, p, e;
                vec a, b;
                std::tie(mod, p, e) = x;
                auto ss = s;
                for (auto&& x : ss) x %= mod;
                std::tie(a, b) = prime_power(ss, mod, p, e);
                as.emplace_back(a);
                n = std::max(n, a.size());
            }
            vec a(n), c(as.size()), m(as.size());
            for (size_t i = 0; i < n; ++i)
            {
                for (size_t j = 0; j < as.size(); ++j)
                {
                    m[j] = std::get<0>(fac[j]);
                    c[j] = i < as[j].size() ? as[j][i] : 0;
                }
                a[i] = crt(c, m);
            }
            return a;
        }
    
        LinearRecurrence(const vec& s, const vec& c, int64 mod) : init(s), trans(c), mod(mod), m(s.size()) {}
        LinearRecurrence(const vec& s, int64 mod, bool is_prime = true) : mod(mod)
        {
            vec A;
            if (is_prime)
                A = BerlekampMassey(s, mod);
            else
                A = ReedsSloane(s, mod);
            if (A.empty()) A = {0};
            m = A.size() - 1;
            trans.resize(m);
            for (int i = 0; i < m; ++i)
            {
                trans[i] = (mod - A[i + 1]) % mod;
            }
            std::reverse(trans.begin(), trans.end());
            init = {s.begin(), s.begin() + m};
        }
        int64 calc(int64 n)
        {
            if (mod == 1) return 0;
            if (n < m) return init[n];
            vec v(m), u(m << 1);
            int msk = !!n;
            for (int64 m = n; m > 1; m >>= 1) msk <<= 1;
            v[0] = 1 % mod;
            for (int x = 0; msk; msk >>= 1, x <<= 1)
            {
                std::fill_n(u.begin(), m * 2, 0);
                x |= !!(n & msk);
                if (x < m)
                    u[x] = 1 % mod;
                else
                { // can be optimized by fft/ntt
                    for (int i = 0; i < m; ++i)
                    {
                        for (int j = 0, t = i + (x & 1); j < m; ++j, ++t)
                        {
                            u[t] = (u[t] + v[i] * v[j]) % mod;
                        }
                    }
                    for (int i = m * 2 - 1; i >= m; --i)
                    {
                        for (int j = 0, t = i - m; j < m; ++j, ++t)
                        {
                            u[t] = (u[t] + trans[j] * u[i]) % mod;
                        }
                    }
                }
                v = {u.begin(), u.begin() + m};
            }
            int64 ret = 0;
            for (int i = 0; i < m; ++i)
            {
                ret = (ret + v[i] * init[i]) % mod;
            }
            return ret;
        }
    
        vec init, trans;
        int64 mod;
        int m;
    };
    using namespace std;
    typedef long long ll;
    ll A[50001];
    ll mod=1e9;
    void init()
    {
        A[2]=A[1]=1;
        A[0]=0;
        for(int i=3;i<=50;i++){
            A[i]=(A[i-1]+A[i-2])%mod;
        }
    }
    ll qp(ll x,ll n)
    {
        ll ans=1;
        while(n){
            if(n&1)ans=(ans*x)%mod;
            x=(x*x)%mod;
            n>>=1;
        }
        return ans;
    }
    int main()
    {
        init();
        ll n,m;
        scanf("%lld%lld",&n,&m);
        vector<ll> v;
        ll t=0;
        for(int i=0;i<=min(n,50ll);i++){
            t=(t+qp(A[i],m))%mod;
            v.push_back(t);
        }
        LinearRecurrence L(v, mod, false);
        cout<<L.calc(n)<<'
    ';
    
    }
  • 相关阅读:
    mysql在windows下备份&恢复数据库语句
    Postman(三)、获取响应数据
    LoadRunner(八)、常用的接口压测格式
    LoadRunner(七)、集合点
    LoadRunner(六)、事务
    LoadRunner(五)、参数化之文本参数化
    repmgr安装使用
    PostgreSQL 游标的种类
    win server 2019 资源管理器 内存占用高
    给MySQL中某表增加一个新字段,并设为主键值为自动增长。
  • 原文地址:https://www.cnblogs.com/liulex/p/11359766.html
Copyright © 2011-2022 走看看