zoukankan      html  css  js  c++  java
  • YJJ's Salesman

    YJJ's Salesman

    YJJ is a salesman who has traveled through western country. YJJ is always on journey. Either is he at the destination, or on the way to destination. 
    One day, he is going to travel from city A to southeastern city B. Let us assume that A is (0,0(0,0) on the rectangle map and B (109,109)(109,109). YJJ is so busy so he never turn back or go twice the same way, he will only move to east, south or southeast, which means, if YJJ is at (x,y)(x,y) now (0x109,0y109)(0≤x≤109,0≤y≤109), he will only forward to (x+1,y)(x+1,y), (x,y+1)(x,y+1) or (x+1,y+1)(x+1,y+1). 
    On the rectangle map from (0,0)(0,0) to (109,109)(109,109), there are several villages scattering on the map. Villagers will do business deals with salesmen from northwestern, but not northern or western. In mathematical language, this means when there is a village kk on (xk,yk)(xk,yk) (1xk109,1yk109)(1≤xk≤109,1≤yk≤109), only the one who was from (xk1,yk1)(xk−1,yk−1) to (xk,yk)(xk,yk) will be able to earn vkvk dollars.(YJJ may get different number of dollars from different village.) 
    YJJ has no time to plan the path, can you help him to find maximum of dollars YJJ can get.

    线段树+区间离散化+dp

    #include<bits/stdc++.h>
    using namespace std;
    #define int long long
    typedef long long ll;
    #define P pair<ll,ll>
    #define sc(x) scanf("%I64d",&x);
    #define maxn 100005
    struct Nod
    {
        int x,y,v;
    
    };
    Nod A[maxn];
    int N;
    int L[maxn*4],R[maxn*4],V[maxn*4];
    bool cmp(Nod a,Nod b)
    {
        if(a.x==b.x)return a.y>b.y;
        return a.x<b.x;
    }
    void build(int l,int r,int x)
    {
    
        L[x]=l;
        R[x]=r;
    
        if(l==r)
        {
            V[x]=0;
            return ;
        }
        int mid=(l+r)/2;
        build(l,mid,2*x);
        build(mid+1,r,2*x+1);
        V[x] =0;
    }
    int query(int l,int r,int x)
    {
        if(r==0)return 0;
        if(L[x]>=l&&R[x]<=r)
        {
            return V[x];
    
        }
        else
        {
            int mid=(L[x]+R[x])/2;
            if(r<=mid)return query(l,r,2*x);
            else if(l>mid)return query(l,r,2*x+1);
            else return max(query(l,r,2*x),query(l,r,2*x+1));
    
        }
    }
    void update(int x,int pos,int w)
    {
        if(L[x]==R[x])
        {
            V[x]=max(w,V[x]);
            return;
        }
        int mid=(L[x]+R[x])/2;
        if(mid>=pos)update(x*2,pos,w);
        else update(x*2+1,pos,w);
        V[x]=max(V[2*x],V[2*x+1]);
    
    
    }
    int B[maxn];
    signed main()
    {
        int T;
        sc(T);
        while(T--)
        {
            sc(N);
            for(int i=1; i<=N; i++)
            {
                sc(A[i].x);
                sc(A[i].y);
                sc(A[i].v);
                B[i]=A[i].y;
            }
            sort(B+1,B+N+1);
            int siz=unique(B+1,B+N+1)-B-1;
            for(int i=1; i<=N; i++)
            {
                A[i].y=lower_bound(B+1,B+siz+1,A[i].y)-B;
            }
            build(1,N,1);
            sort(A+1,A+N+1,cmp);
            int ans=0;
            for(int i=1; i<=N; i++)
            {
                ll t=query(1,A[i].y-1,1)+A[i].v;
                // cout<<A[i].y-1<<" "<<t<<'
    ';
                update(1,A[i].y,t);
                ans=max(ans,t);
            }
            cout<<ans<<'
    ';
        }
    }

     树状数组大法好

    #include<bits/stdc++.h>
    using namespace std;
    #define int long long
    typedef long long ll;
    #define P pair<ll,ll>
    #define sc(x) scanf("%I64d",&x);
    #define maxn 100005
    struct Nod
    {
        int x,y,v;
    
    };
    Nod A[maxn];
    int N;
    int V[maxn*4];
    bool cmp(Nod a,Nod b)
    {
        if(a.x==b.x)return a.y>b.y;
        return a.x<b.x;
    }
    void add(int x,int val)
    {
        while(x<=N){
            V[x]=max(val,V[x]);
            x+=(x&-x);
        }
    }
    int get(int x)
    {
        if(x==0)return 0;
        int ans=0;
        while(x){
            ans=max(V[x],ans);
            x-=(x&-x);
        }
        return ans;
    }
    int B[maxn];
    signed main()
    {
        int T;
        sc(T);
        while(T--)
        {
            memset(V,0,sizeof V);
            sc(N);
            for(int i=1; i<=N; i++)
            {
                sc(A[i].x);
                sc(A[i].y);
                sc(A[i].v);
                B[i]=A[i].y;
            }
            sort(B+1,B+N+1);
            int siz=unique(B+1,B+N+1)-B-1;
            for(int i=1; i<=N; i++)
            {
                A[i].y=lower_bound(B+1,B+siz+1,A[i].y)-B;
            }
            //build(1,N,1);
            sort(A+1,A+N+1,cmp);
            int ans=0;
            for(int i=1; i<=N; i++)
            {
                ll t=get(A[i].y-1)+A[i].v;
               //  cout<<A[i].y-1<<" "<<t<<'
    ';
                add(A[i].y,t);
                ans=max(ans,t);
            }
            cout<<ans<<'
    ';
        }
    }
  • 相关阅读:
    数据结构 【实验 串的基本操作】
    Ioc容器依赖注入-Spring 源码系列(2)
    定时任务管理中心(dubbo+spring)-我们到底能走多远系列47
    jvm内存增长问题排查简例
    Ioc容器beanDefinition-Spring 源码系列(1)
    SPI机制
    java工厂-积木系列
    java单例-积木系列
    利用spring AOP 和注解实现方法中查cache-我们到底能走多远系列(46)
    java 静态代理-积木系列
  • 原文地址:https://www.cnblogs.com/liulex/p/11391793.html
Copyright © 2011-2022 走看看