zoukankan      html  css  js  c++  java
  • 第三次作业

    5. 给定如表4-9所示的概率模型,求出序列a1a1a3a2a3a1的实值标签。

                                     表4-9     习题5、习题6的概率模型

                                 字母                                          概率


                                  a1                                            0.2

                                  a2                                            0.3

                                  a3                                            0.5


    解:p(a1=0.2),p(a2=0.3),p(a3=0.5).

          映射:a1=1,a2=2,a3=3.

         Fx(0)=0,Fx(1)=0.2,Fx(2)=0.5,Fx(3)=1.0,

         u(0)=1,  l(0)=0,

         l(1)=l(0)+(u(0)-l(0))Fx(0)=0                                  l(4)=l(3)+(u(3)-l(3))Fx(1)=0.024

    1                                                                1132

         u(1)=l(0)+(u(0)-l(0))Fx(1)=0.2                              u(4)=l(3)+(u(3)-l(3))Fx(2)=0.03

          l(2)=l(1)+(u(1)-l(1))Fx(0)=0                                    l(5)=l(4)+(u(4)-l(4))Fx(2)=0.027

    11                                                               11323

          u(2)=l(1)+(u(1)-l(1))Fx(1)=0.04                              u(5)=l(4)+(u(4)-l(4))Fx(3)=0.03

            l(3)=l(2)+(u(2)-l(2))Fx(2)=0.02                                 l(6)=l(5)+(u(5)-l(5))Fx(0)=0.027

    113                                                            113231

            u(3)=l(2)+(u(2)-l(2))Fx(3)=0.04                                 u(6)=l(5)+(u(5)-l(5))Fx(1)=0.0276

    T(113231)=( u(6)+l(6))/2=(0.027+0.0276)/2=0.0273

    6. 对于表4-9给出的概率模型,对于一个标签为0.63215699的长度为10的序列进行解码。

    解:由上题可知: Fx(0)=0,Fx(1)=0.2,Fx(2)=0.5,Fx(3)=1.0,

                           由上题可知: u(0)=1,      下界: l(0)=0,

    u(1)=l(0)+(u(0)-l(0))Fx(k1)=0+(1-0)Fx(k1)

     l(1)=l(0)+(u(0)-l(0))Fx(k1-1)=0+(1-0)Fx(k1-1)

    当k1=1时,u(1)=0.2,l(1)=0  所以它在区间[0, 0.2)上;

    当k1=2时,u(1)=0.5,l(1)=0.2  所以它在区间[0.2,0.5)上;

    当k1=3时,u(1)=1,l(1)=0.5  所以它在区间[0.5,1)上,

    由于0.63215699在[0.5,1)上,所以第一个元素为a3,

    u(2)=l(1)+(u(1)-l(1))Fx(k2)=0.5+(1-0.5)Fx(k2)

     l(2)=l(1)+(u(1)-l(1))Fx(k2-1)=0.5+(1-0.5)Fx(k2-1)

    当k2=1时,u(2)=0.6,l(2)=0.5  所以它在区间[0.5, 0.6)上;

    当k2=2时,u(2)=0.75,l(2)=0.6  所以它在区间[0.6,0.75)上;

    当k2=3时,u(2)=1,l(2)=0.75  所以它在区间[0.75,1)上;

    由于0.63215699在[0.6,0.75)上,所以第2个元素为a2,

    u(3)=l(2)+(u(2)-l(2))Fx(k3)=0.6+(0.75-0.6)Fx(k3)=0.6+0.15Fx(k3)

     l(3)=l(2)+(u(2)-l(2))Fx(k3-1)=)0.6+(0.75-0.6)Fx(k3-1)=0.6+0.15Fx(k3-1)

    当k3=1时,u(3)=0.55,l(3)=0.5  所以它在区间[0.5, 0.55)上;

    当k3=2时,u(3)=0.625,l(3)=0.55  所以它在区间[0.55,0.625)上;

    当k3=3时,u(3)=0.75,l(3)=0.625  所以它在区间[0.625,0.75)上;

    由于0.63215699在[0.625,0.75)上,所以第3个元素为a3,

    u(4)=l(3)+(u(3)-l(3))Fx(k4)=0.625+(0.75-0.625)Fx(k4)=0.625+0.125Fx(k4)

     l(4)=l(3)+(u(3)-l(3))Fx(k4-1)=)0.6+(0.75-0.6)Fx(k4-1)=0.625+0.125Fx(k4-1)

    当k4=1时,u(4)=0.65,l(4)=0.625  所以它在区间[0.625, 0.65)上;

    当k4=2时,u(4)=0.6875,l(4)=0.625  所以它在区间[0.625,0.6875)上;

    当k4=3时,u(4)=0.75,l(4)=0.6875  所以它在区间[0.6875,0.75)上;

    由于0.63215699在[0.625,0.6875)上,所以第4个元素为a2,

    u(5)=l(4)+(u(4)-l(4))Fx(k5)=0.625+(0.75-0.625)Fx(k5)=0.625+0.025Fx(k5)

     l(5)=l(4)+(u(4)-l(4))Fx(k5-1)=0.625+(0.75-0.625)Fx(k5-1)=0.625+0.025Fx(k5-1)

    当k5=1时,u(5)=0.63,l(5)=0.625  所以它在区间[0.625, 0.63)上;

    当k5=2时,u(5)=0.6375,l(5)=0.63  所以它在区间[0.63,0.6375)上;

    当k5=3时,u(5)=0.65,l(5)=0.6375  所以它在区间[0.6375,0.65)上;

    由于0.63215699在[0.63,0.6375)上,所以第5个元素为a2,

    u(6)=l(5)+(u(5)-l(5))Fx(k6)=0.63+(0.6375-0.63)Fx(k6)=0.63+0.0075Fx(k6)

     l(6)=l(5)+(u(5)-l(5))Fx(k6-1)=0.63+(0.6375-0.63)Fx(k6-1)=0.63+0.0075Fx(k6-1)

    当k6=1时,u(6)=0.6375,l(6)=0.63,  所以它在区间[0.63, 0.6375)上;

    当k6=2时,u(6)=0.645,l(6)=0.6375  所以它在区间[0.6375,0.645)上;

    当k6=3时,u(6)=0.6525,l(6)=0.645  所以它在区间[0.6525,0.645)上;

    由于0.63215699在[0.63,0.6375)上,所以第6个元素为a1

    该序列为:323221

  • 相关阅读:
    数据库中 dbo是什么意思
    常用的设计模式 介绍
    ReferenceEquals和 == 和equals()的比较
    IOC 控制反转模式
    集群和负载均衡
    数据库 读写分离
    C# 中using的几个用途
    WCF ABC
    SQL Server数据库性能优化(三)之 硬件瓶颈分析
    SQL Server数据库性能优化(二)之 索引优化
  • 原文地址:https://www.cnblogs.com/liuli553400/p/4812533.html
Copyright © 2011-2022 走看看