zoukankan      html  css  js  c++  java
  • [leetcode]149. Max Points on a Line多点共线

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

    Example 1:

    Input: [[1,1],[2,2],[3,3]]
    Output: 3
    Explanation:
    ^
    |
    |        o
    |     o
    |  o  
    +------------->
    0  1  2  3  4

    Example 2:

    Input: [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
    Output: 4
    Explanation:
    ^
    |
    |  o
    |     o        o
    |        o
    |  o        o
    +------------------->
    0  1  2  3  4  5  6

    NOTE: input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.

    题意:

    给定二维平面上一些点,问最多多少个点共线

    Solution1: HashMap

    解本题需要的背景知识:【Math Fact】All the points in a line share the same slop.

                                       

    The question is like standing at points[i],  find max number of points in points[j], such that points[i] and points[j] are on the same line.

    1. If points[i], points[j] 's coordinator are the same, they are overlapping.

    2. Otherwise, they are nonoverlapping. Based on the fact that "All the points in a line share the same slop", we use the greatest common divisor(最大公约数) to get the lowest term(最简化) for points[i], points[j]'s coordinator.  即[2,4] 和[4,8], 我们用求最大公约数的方式,将其斜率化成最简形式: 1/2 和 1/2 

    3. We use Map<x, Map<y, occurance>> map to get such slop from x and y's occurance. Then we know how many non-overlapping points in such line.

    code

     1 public class MaxPointsonaLine {
     2     // 已经给定的Point class
     3     class Point {
     4         int x;
     5         int y;
     6 
     7         Point() {
     8             x = 0;
     9             y = 0;
    10         }
    11 
    12         Point(int a, int b) {
    13             x = a;
    14             y = b;
    15         }
    16     }
    17 
    18     public int maxPoints(Point[] points) {
    19         int result = 0;
    20         Map<Integer, Map<Integer, Integer>> map = new HashMap<>();
    21         // standing at points[i]
    22         for (int i = 0; i < points.length; i++) {
    23             map.clear();
    24             int overlapping = 0;
    25             int nonoverlapping = 0;
    26             // checking points[j] 
    27             for (int j = i + 1; j < points.length; j++) {
    28                 int x = points[j].x - points[i].x;
    29                 int y = points[j].y - points[i].y;
    30                 if (x == 0 && y == 0) {
    31                     overlapping++;
    32                     continue;
    33                 }
    34                 int gcd = generateGCD(x, y);
    35                 if (gcd != 0) {
    36                     x = x / gcd;
    37                     y = y / gcd;
    38                 }
    39                 if (map.containsKey(x)) {
    40                     if (map.get(x).containsKey(y)) {
    41                         map.get(x).put(y, map.get(x).get(y) + 1);
    42                     } else {
    43                         map.get(x).put(y, 1);
    44                     }
    45                 } else {
    46                     Map<Integer, Integer> m = new HashMap<>();
    47                     m.put(y, 1);
    48                     map.put(x, m);
    49                 }
    50                 overlapping = Math.max(nonoverlapping, map.get(x).get(y));
    51             }
    52             result = Math.max(result, overlapping + nonoverlapping + 1);
    53         }
    54         return result;
    55     }
    56 
    57     public int generateGCD(int a, int b) {
    58         return (b == 0) ? a : generateGCD(b, a % b);
    59     }
    60 }
  • 相关阅读:
    常用模块
    递归函数
    内置函数与匿名函数
    Mac控制台相关操作
    Maven相关知识记录
    @Import底层实现原理
    spring循环依赖
    springcloud注册中心对比
    分布式事务
    Drools使用注意事项
  • 原文地址:https://www.cnblogs.com/liuliu5151/p/10771297.html
Copyright © 2011-2022 走看看