The count-and-say sequence is the sequence of integers with the first five terms as following:
1. 1 2. 11 3. 21 4. 1211 5. 111221
1
is read off as "one 1"
or 11
.11
is read off as "two 1s"
or 21
.21
is read off as "one 2
, then one 1"
or 1211
.
Given an integer n, generate the nth term of the count-and-say sequence.
Note: Each term of the sequence of integers will be represented as a string.
Example 1:
Input: 1
Output: "1"
Example 2:
Input: 4
Output: "1211"
题意:
给定一个数字串,读出来。并把读的方法也表示成一个数字串。如此计算出第N个串。
1)、1
2)、11,表示1)有1个1,组合起来就是11。
3)、21,表示2)有2个1,组合起来就是21。
4)、1211,表示3)有1个2,2个1,组合起来就是1211。
5)、111221,表示4)有1个1,1个2,2个1,组合起来就是111221。
6)、312211,表示5)有3个1,2个2,2个1,组合起来就是312211。
以此类推,求给定n行的输出结果。
思路:
"1 1 1 2 2 1"
j 查看 j 对应值 == j-1 对应值, count更新为2
j 查看 j 对应值 == j-1 对应值, count更新为3
j 查看 j 对应值 != j-1 对应值,打包前面(count: 3) + previous.charAt(j-1) = '3' + '1' = '31', count初始化为1
j 查看 j 对应值 == j-1 对应值, count更新为2
j 查看 j 对应值 != j-1 对应值,打包前面(count: 2) + previous.charAt(j-1) = '2' + '2' = '22', count初始化为1
代码:
1 class Solution { 2 public String countAndSay(int n) { 3 String pre = "1"; 4 for(int i = 2; i<=n; i++){ 5 StringBuilder sb = new StringBuilder(); 6 int count = 1; 7 for(int j =1; j< pre.length() ; j++){ 8 if(pre.charAt(j) == pre. charAt(j-1)){ 9 count++; 10 }else{ 11 sb.append(count+""); 12 sb.append(pre.charAt(j-1)); 13 count = 1; 14 } 15 } 16 sb.append(count+""); 17 sb.append(pre.charAt(pre.length()-1)); 18 pre = sb.toString(); 19 20 } 21 return pre; 22 } 23 }