zoukankan      html  css  js  c++  java
  • [leetcode]304. Range Sum Query 2D

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

    Range Sum Query 2D
    The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

    Example:

    Given matrix = [
      [3, 0, 1, 4, 2],
      [5, 6, 3, 2, 1],
      [1, 2, 0, 1, 5],
      [4, 1, 0, 1, 7],
      [1, 0, 3, 0, 5]
    ]
    
    sumRegion(2, 1, 4, 3) -> 8
    sumRegion(1, 1, 2, 2) -> 11
    sumRegion(1, 2, 2, 4) -> 12

    题目

    给定元素不变的矩阵,求各种子矩阵和。

    思路

    Given matrix = [
      [3, 0, 1, 4, 2],
      [5, 6, 3, 2, 1],
      [1, 2, 0, 1, 5],
      [4, 1, 0, 1, 7],
      [1, 0, 3, 0, 5]
    ]
    
    sumRegion(2, 1, 4, 3) -> 8  
    2,1) 为黄色range左上角的坐标, 所在坐标对应的点为2
    4,3) 为黄色range右下角的坐标, 所在坐标对应的点为0
    黄色range中 2 + 0 + 0 + 1 + 0 + 1 + 0 + 3 + 0 = 8

    比如, input matrix为
         2    0    -3    4
         6    3    2    -1
         5    4    7    3
         2    -6    8    1

    多加一行一列方便写code,变成dp matrix为

     0    0    0     0    0
     0    2    0    -3    4
     0    6    3     2    -1
     0    5    4     7    3
     0    2    -6    8    1

    开始fill dp matrix

    dp[i][j]表示sum of rectangle from (0,0) to matrix (i-1, j-1)

     0    0    0     0    0
     0    2    2    -1    3  //-> first row: easy to fill(累加)
     0        
     0       
     0        
     0    0    0     0    0
     0    2    2    -1    3  
     0    8     
     0   13     
     0   15
    // -> first col: easy to fill(累加)
     0    0    0     0    0
     0    2    2    -1    3  
     0    8    X -> dp[i][j] = dp[i-1][j] // 正上方 2
     0   13                  + dp[i][j-1] // 正左方 8
     0   15                  + matrix [i-1][j-1] // input matrix 该位置值
    - dp[i-1][j-1] // 左上角 2 ,重复加了两次需要减去一次

    代码

     1 class NumMatrix {
     2     private int[][] dp;
     3     
     4      /* 1.build and fill dp matrix in O(m*n) time */
     5     public NumMatrix(int[][] matrix) {   
     6         int row = 0;
     7         int col = 0;
     8         if (matrix.length != 0) {
     9             row = matrix.length;
    10             col = matrix[0].length;
    11         }
    12         dp = new int[row + 1][col + 1];
    13         for (int i = 1; i < dp.length; i++) {
    14             for (int j = 1; j < dp[0].length; j++) {
    15                 dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + matrix[i - 1][j - 1] - dp[i - 1][j - 1];
    16             }
    17         }
    18         
    19     }
    20     
    21     /*2. query in O(1) time */
    22     public int sumRegion(int row1, int col1, int row2, int col2) {
    23         /* coz dp matrix has size 1 greater one more than original matrix*/
    24         row1++;
    25         col1++;
    26         row2++;
    27         col2++;
    28         return dp[row2][col2] - dp[row1 - 1][col2] - dp[row2][col1 - 1] + dp[row1 - 1][col1 - 1];
    29     }
    30 }


    代码

     1 class NumMatrix {
     2     private int[][] dp;
     3     
     4      /* 1.build and fill dp matrix in O(m*n) time */
     5     public NumMatrix(int[][] matrix) {   
     6         int row = 0;
     7         int col = 0;
     8         if (matrix.length != 0) {
     9             row = matrix.length;
    10             col = matrix[0].length;
    11         }
    12         dp = new int[row + 1][col + 1];
    13         for (int i = 1; i < dp.length; i++) {
    14             for (int j = 1; j < dp[0].length; j++) {
    15                 dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + matrix[i - 1][j - 1] - dp[i - 1][j - 1];
    16             }
    17         }
    18         
    19     }
    20     
    21     /*2. query in O(1) time */
    22     public int sumRegion(int row1, int col1, int row2, int col2) {
    23         /* coz dp matrix has size 1 greater one more than original matrix*/
    24         row1++;
    25         col1++;
    26         row2++;
    27         col2++;
    28         return dp[row2][col2] - dp[row1 - 1][col2] - dp[row2][col1 - 1] + dp[row1 - 1][col1 - 1];
    29     }
    30 }
  • 相关阅读:
    adb shell dumpsys的使用
    appium框架之bootstrap
    adb forward交互流程
    adb shell中的am pm命令
    appium日志示例解读
    移动自动化相关名词解释
    appium架构分析
    solr单机环境配置并包含外部单机zookeeper
    Linux下常用的硬件信息查看命令
    Zookeeper服务常用的操作命令
  • 原文地址:https://www.cnblogs.com/liuliu5151/p/9841057.html
Copyright © 2011-2022 走看看