zoukankan      html  css  js  c++  java
  • [leetcode]150. Evaluate Reverse Polish Notation逆波兰表示法

    Evaluate the value of an arithmetic expression in Reverse Polish Notation.

    Valid operators are +-*/. Each operand may be an integer or another expression.

    Note:

    • Division between two integers should truncate toward zero.
    • The given RPN expression is always valid. That means the expression would always evaluate to a result and there won't be any divide by zero operation.

    Example 1:

    Input: ["2", "1", "+", "3", "*"]
    Output: 9
    Explanation: ((2 + 1) * 3) = 9

    思路

    • 平常我们使用的算式是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
    • 逆波兰使用的是运算符写在后面的表达方式,如 1 2 + 3 4 + *  
    • 这样写的好处是,在没有括号的情况下不产生歧义

    I would use stack to help solving this problem

    Traverse the whole given string array 

    1. if operand is integer,  push into stack

      

    2. if operand is operation, pop two items from stack, do caculation and push result back to stack

    code

     1 class Solution {
     2     public int evalRPN(String[] tokens) {
     3         Stack<Integer> stack = new Stack<>();
     4         for (String s : tokens) {
     5             if(s.equals("+")) {
     6                 stack.push(stack.pop()+stack.pop());
     7             }else if(s.equals("/")) {
     8                 int latter = stack.pop();
     9                 int former = stack.pop();
    10                 stack.push( former / latter);
    11             }else if(s.equals("*")) {
    12                 stack.push(stack.pop() * stack.pop());
    13             }else if(s.equals("-")) {
    14                 int latter = stack.pop();
    15                 int former = stack.pop();
    16                 stack.push(former - latter);
    17             }else {
    18                 stack.push(Integer.parseInt(s));
    19             }
    20         }    
    21         return stack.pop(); 
    22     }
    23 }
  • 相关阅读:
    codevs1080线段树练习
    NOIP2015 子串
    codevs1204 寻找子串位置
    字符串匹配的KMP算法
    TYVJ1460 旅行
    基础
    搜索
    二叉排序树
    二叉树
    poj
  • 原文地址:https://www.cnblogs.com/liuliu5151/p/9901121.html
Copyright © 2011-2022 走看看