zoukankan      html  css  js  c++  java
  • [leetcode]150. Evaluate Reverse Polish Notation逆波兰表示法

    Evaluate the value of an arithmetic expression in Reverse Polish Notation.

    Valid operators are +-*/. Each operand may be an integer or another expression.

    Note:

    • Division between two integers should truncate toward zero.
    • The given RPN expression is always valid. That means the expression would always evaluate to a result and there won't be any divide by zero operation.

    Example 1:

    Input: ["2", "1", "+", "3", "*"]
    Output: 9
    Explanation: ((2 + 1) * 3) = 9

    思路

    • 平常我们使用的算式是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
    • 逆波兰使用的是运算符写在后面的表达方式,如 1 2 + 3 4 + *  
    • 这样写的好处是,在没有括号的情况下不产生歧义

    I would use stack to help solving this problem

    Traverse the whole given string array 

    1. if operand is integer,  push into stack

      

    2. if operand is operation, pop two items from stack, do caculation and push result back to stack

    code

     1 class Solution {
     2     public int evalRPN(String[] tokens) {
     3         Stack<Integer> stack = new Stack<>();
     4         for (String s : tokens) {
     5             if(s.equals("+")) {
     6                 stack.push(stack.pop()+stack.pop());
     7             }else if(s.equals("/")) {
     8                 int latter = stack.pop();
     9                 int former = stack.pop();
    10                 stack.push( former / latter);
    11             }else if(s.equals("*")) {
    12                 stack.push(stack.pop() * stack.pop());
    13             }else if(s.equals("-")) {
    14                 int latter = stack.pop();
    15                 int former = stack.pop();
    16                 stack.push(former - latter);
    17             }else {
    18                 stack.push(Integer.parseInt(s));
    19             }
    20         }    
    21         return stack.pop(); 
    22     }
    23 }
  • 相关阅读:
    王道考研复习-操作系统-进程管理(二)
    王道考研复习-操作系统-计算机系统概述(一)
    Understanding Undefined Behavior
    iOS开发需要掌握的命令
    LLDB命令速查
    Flutter简介
    poj 2115 C Looooops 扩展欧几里得算法
    poj 2635 The Embarrassed Cryptographer ??/Java??(???)
    poj 3292 Semi-prime H-numbers 筛素数(简单题)
    poj 1019 Number Sequence 数学
  • 原文地址:https://www.cnblogs.com/liuliu5151/p/9901121.html
Copyright © 2011-2022 走看看