zoukankan      html  css  js  c++  java
  • HDOJ 1024 Max Sum Plus Plus -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1024


    Problem Description
    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

    Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
     

    Input
    Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
    Process to the end of file.
     

    Output
    Output the maximal summation described above in one line.
     

    Sample Input
    1 3 1 2 3 2 6 -1 4 -2 3 -2 3
     

    Sample Output
    6 8
     
    Recommend
    We have carefully selected several similar problems for you:  1074 1025 1081 1080 1160

    分析
    设状态为 cur[i,j],表示前 j 项分为 i 段的最大和,且第 i 段必须包含 data[j],则状态转移方程如下:
    cur[i,j] = max{cur[i,j − 1] + data[j],max{cur[i − 1,t] + data[j]}}, 其中i ≤ j ≤ n,i − 1 ≤ t < j
    target = max{cur[m,j]}, 其中m ≤ j ≤ n

    分为两种情况:
    • 情况一,data[j] 包含在第 i 段之中,cur[i,j − 1] + data[j]。
    • 情况二,data[j] 独立划分成为一段,max{cur[i − 1,t] + data[j]}。
    观察上述两种情况可知 cur[i,j] 的值只和 cur[i,j-1] 和 cur[i-1,t] 这两个值相关,因此不需要二维数组,
    可以用滚动数组,只需要两个一维数组,用 cur[j] 表示现阶段的最大值,即 cur[i,j − 1] + data[j],用
    pre[j] 表示上一阶段的最大值,即 max{cur[i − 1,t] + data[j]}。

    #include <stdio.h>
    #include <stdlib.h>
    #include <limits.h>
    
    int MaxSum(int * data, int m, int n){
        int i, j, max_sum;
        int * cur = (int *)calloc(n + 1, sizeof(int));
        int * pre = (int *)calloc(n + 1, sizeof(int));
        data = data - 1;  //data下标从0开始, cur、pre下标从1开始,为使下标一致,data减1
        for (i = 1; i <= m; ++i){
            max_sum = INT_MIN;
            for (j = i; j <= n; ++j){
                if (cur[j - 1] < pre[j - 1])
                    cur[j] = pre[j - 1] + data[j];
                else
                    cur[j] = cur[j - 1] + data[j];
                pre[j - 1] = max_sum;
                if (max_sum < cur[j])
                    max_sum = cur[j];
            }
            pre[j - 1] = max_sum;
        }
        free(cur);
        free(pre);
        return max_sum;
    }
    
    int main(void){
        int m, n, i, *data;
        while (scanf("%d%d", &m, &n) != EOF){
            data = (int *)malloc(sizeof(int) * n);
            for (i=0; i<n; ++i){
                scanf("%d", &data[i]);
            }
            printf ("%d
    ", MaxSum(data, m, n));
            free(data);
        }
    
        return 0;
    }


    参考资料:ACM Cheat Sheet

  • 相关阅读:
    考研系列一-线性表类(顺序存储)
    因特网协议分层及它们的服务模型
    矩阵归零
    字符编码(续)---Unicode与ANSI字符串转换以及分辨字符编码形式
    奇妙的位运算
    一道面试题Lintcode196-Find the Missing Number
    错误处理
    px 和 em 的区别
    简述同步和异步的区别
    简述一下 src 与 href 的区别
  • 原文地址:https://www.cnblogs.com/liushaobo/p/4373764.html
Copyright © 2011-2022 走看看