zoukankan      html  css  js  c++  java
  • POJ 1050 To the Max -- 动态规划

    题目地址:http://poj.org/problem?id=1050

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
    is in the lower left corner:

    9 2
    -4 1
    -1 8
    and has a sum of 15.

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15


    时间复杂度为O(N^2*M^2)     

    #include <stdio.h>
    #include <limits.h>
    
    //PS[i][j]等于以(1, 1), (1, j), (i, 1), (i, j)为顶点的矩形区域的元素之和
    void Preproccess(int matrix[101][101], int PS[101][101], int N){
    	int i, j;
    	for (i=0; i<=N; ++i){
    		PS[0][i] = 0;
    		PS[i][0] = 0;
    	}
    	for (i=1; i<=N; ++i){
    		for (j=1; j<=N; ++j){
    			PS[i][j] = PS[i-1][j] + PS[i][j-1] - PS[i-1][j-1] + matrix[i][j];
    		}
    	}
    }
    
    int main(void){
    	int N;
    	int matrix[101][101];
    	int PS[101][101];
    	int i, j;
    	int i_min, i_max;
    	int j_min, j_max;
    	int max, tmp;
    
    	while (scanf ("%d", &N) != EOF){
    		for (i=1; i<=N; ++i)
    			for (j=1; j<=N; ++j)
    				scanf ("%d", &matrix[i][j]);
    		Preproccess(matrix, PS, N);
    		max = INT_MIN;
    		/*以(i_min, j_min), (i_max, j_min), (i_min, j_max), (i_max, j_max)为顶点的矩形区域的元素之和,
    		等于PS[i_max][j_max] - PS[i_min-1][j_max] - PS[i_max][j_min-1] + PS[i_min-1][j_min-1]
    		*/
    		for (i_min=1; i_min<=N; ++i_min){
    			for (i_max=i_min; i_max<=N; ++i_max){
    				for (j_min=1; j_min<=N; ++j_min){
    					for (j_max=j_min; j_max<=N; ++j_max){
    						tmp = PS[i_max][j_max] - PS[i_min-1][j_max] - PS[i_max][j_min-1] + PS[i_min-1][j_min-1];
    						if (tmp > max)
    							max = tmp;
    					}
    				}
    			}
    		}
    		printf ("%d
    ", max);
    	}
    
    	return 0;
    }


    时间复杂度为O(N*M*min(N, M))

    #include <stdio.h>
    #include <limits.h>
    
    //PS[i][j]等于以(1, 1), (1, j), (i, 1), (i, j)为顶点的矩形区域的元素之和
    void Preproccess(int matrix[101][101], int PS[101][101], int N){
    	int i, j;
    	for (i=0; i<=N; ++i){
    		PS[0][i] = 0;
    		PS[i][0] = 0;
    	}
    	for (i=1; i<=N; ++i){
    		for (j=1; j<=N; ++j){
    			PS[i][j] = PS[i-1][j] + PS[i][j-1] - PS[i-1][j-1] + matrix[i][j];
    		}
    	}
    }
    
    //BC(PS, a, c, i)表示在第a行和第c行之间的第i列的所有元素的和,可以通过“部分和”PS[i][j]在O(1)时间内计算出来。
    int BC(int PS[101][101], int a, int c, int i){
    	return PS[c][i] - PS[a-1][i] - PS[c][i-1] + PS[a-1][i-1];
    }
    
    int MaxSum (int matrix[101][101], int PS[101][101], int N){
    	int max = INT_MIN;
    	int a, c, i;
    	int Start, All;
    	for (a=1; a<=N; ++a){
    		for (c=a; c<=N; ++c){
    			Start = BC(PS, a, c, N);
    			All = BC(PS, a, c, N);
    			for (i=N-1; i>=1; --i){
    				if (Start < 0)
    					Start = 0;
    				Start += BC(PS, a, c, i);
    				if (Start > All)
    					All = Start;
    			}
    			if (All > max)
    				max = All;
    		}
    	}
    	return max;
    }
    
    int main(void){
    	int N;
    	int matrix[101][101];
    	int PS[101][101];
    	int i, j;
    	
    	while (scanf ("%d", &N) != EOF){
    		for (i=1; i<=N; ++i)
    			for (j=1; j<=N; ++j)
    				scanf ("%d", &matrix[i][j]);
    		Preproccess(matrix, PS, N);
    		printf ("%d
    ", MaxSum (matrix, PS, N));
    	}
    
    	return 0;
    }

    HDOJ上相似的题目:http://acm.hdu.edu.cn/showproblem.php?pid=1559

    九度OJ上相似的题目:http://ac.jobdu.com/problem.php?pid=1492

    参考资料:编程之美

  • 相关阅读:
    C# 导出 Excel 自定义输出格式
    ONE路由协议模块分析与应用
    2440(ARM9) L3G4200D ADXL345 裸机程序
    C# SerialPort.close() bug解决方法
    C++ Primer 第五章 表达式
    C++ Primer 第一章 快速入门
    C++ Primer 第二章 变量和基本类型
    虚拟机virtualbox中挂载新硬盘
    C++ Primer 第四章 数组与指针
    C++ Primer 第三章 标准库类型
  • 原文地址:https://www.cnblogs.com/liushaobo/p/4373773.html
Copyright © 2011-2022 走看看