zoukankan      html  css  js  c++  java
  • redis(二)redis安装

    redis的安装

    yum -y install make zlib zlib-devel gcc-c++ libtool openssl openssl-devel pcre pcre-devel
    cd /etc
    wget https://www-1259165587.cos.ap-nanjing.myqcloud.com/redis-4.0.6.tar.gz
    tar xf redis-4.0.6.tar.gz
    mv redis-4.0.6  redis
    rm -rf redis-4.0.6.tar.gz
    cd redis 
    make  && make  install
    
    mkdir /etc/redis/conf
    cp redis.conf ./conf
    sed  -i s#daemonize no#daemonize yes#g /etc/redis/conf/redis.conf
    
    groupadd redis
    useradd redis  -g redis -M -s /sbin/nologin
    chown -R redis:redis /etc/redis
     
    cat >/usr/lib/systemd/system/redis.service<<EOF
    [Unit]
    Description=Redis persistent key-value database 
    After=network.target 
    After=network-online.target 
    Wants=network-online.target
     
    [Service]
    LimitNOFILE=65536
    ExecStart=/usr/local/bin/redis-server /etc/redis/conf/redis.conf --supervised systemd 
    ExecStop=/usr/local/bin/redis-cli shutdown 
    Type=notify 
    User=redis 
    Group=redis 
    RuntimeDirectory=redis 
    RuntimeDirectoryMode=0755
     
    [Install] 
    WantedBy=multi-user.target 
    EOF
    systemctl daemon-reload
    systemctl start  redis
    ps -ef |grep redis
    
    #优化警告信息
    sysctl vm.overcommit_memory=1
    echo  never > /sys/kernel/mm/transparent_hugepage/enabled 
    echo "511" > /proc/sys/net/core/somaxconn
    sysctl  net.core.somaxconn=4096
    
    
    ===============================================
    警告1:maximum open files 过低
    17068:M 23 Jun 2020 10:23:55.707 # You requested maxclients of 10000 requiring at least 10032 max file descriptors. 17068:M 23 Jun 2020 10:23:55.707 # Server can't set maximum open files to 10032 because of OS error: Operation not permitted. 17068:M 23 Jun 2020 10:23:55.707 # Current maximum open files is 4096. maxclients has been reduced to 4064 to compensate for low ulimit. If you need higher maxclients increase 'ulimit -n
    解决:
    vim /usr/lib/systemd/system/redis.service 
    [Service] 
    LimitNOFILE=65536
    
    警告2:: overcommit_memory设置虚拟化内存相关
    
    17068:M 23 Jun 2020 10:23:55.707 # WARNING overcommit_memory is set to 0! Background save may fail under low memory condition. To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or run the command 'sysctl vm.overcommit_memory=1' for this to take effect.
    解决:
    [root@localhost ~]# sysctl vm.overcommit_memory=1
    vm.overcommit_memory = 1
    
    警告3:关闭THP内存大页
    17068:M 23 Jun 2020 10:23:55.707 # WARNING you have Transparent Huge Pages (THP) support enabled in your kernel. This will create latency and memory usage issues with Redis. To fix this issue run the command 'echo never > /sys/kernel/mm/transparent_hugepage/enabled' as root, and add it to your /etc/rc.local in order to retain the setting after a reboot. Redis must be restarted after THP is disabled. 17068:M 23 Jun 2020 10:23:55.707 * Ready to accept connections
    解决:
    echo  never > /sys/kernel/mm/transparent_hugepage/enabled 
    
    警告4:
    34685:M 23 Jun 2020 10:47:00.901 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128
    
    解决:
    echo "511" > /proc/sys/net/core/somaxconn
    [root@localhost ~]# sysctl  net.core.somaxconn=4096
    net.core.somaxconn = 4096
    

    文件结构

    logfile 指定日志文件路径
    dbfilename  数据文件名(redis逻辑上有16个库  对应的物理文件只有一个)
    dir /var/lib/redis-server/ 数据文件路径
    pidfile /var/run/redis_6379.pid pid文件路径
    .rediscli_history 执行过的命令记录
    

    注意:这些都可以在配置文件中指定

    redis.conf详解

    # Redis configuration file example.Redis配置文件示例。
    #
    # Note that in order to read the configuration file, Redis must be
    # started with the file path as first argument: 注意,为了读取配置文件,Redis必须以文件路径作为第一个参数启动
    #
    # ./redis-server /path/to/redis.conf
    
    # Note on units: when memory size is needed, it is possible to specify
    # it in the usual form of 1k 5GB 4M and so forth: 关于单位的注意:当需要内存大小时,可以用1k 5GB 4M等常用形式来指定
    #
    # 1k => 1000 bytes
    # 1kb => 1024 bytes
    # 1m => 1000000 bytes
    # 1mb => 1024*1024 bytes
    # 1g => 1000000000 bytes
    # 1gb => 1024*1024*1024 bytes
    #
    # units are case insensitive so 1GB 1Gb 1gB are all the same. 单元不区分大小写,因此1GB 1GB都是相同的
    
    ################################## INCLUDES ################################### 包括
    
    # Include one or more other config files here.  This is useful if you
    # have a standard template that goes to all Redis servers but also need
    # to customize a few per-server settings.  Include files can include
    # other files, so use this wisely.
    # 在此处包含一个或多个其他配置文件。
    # 如果您有一个标准的模板,可以连接到所有Redis服务器,
    # 但也需要自定义每个服务器的一些设置,那么这将非常有用。
    # Include文件可以包含其他文件,所以要明智地使用它
    
    # Notice option "include" won't be rewritten by command "CONFIG REWRITE"
    # from admin or Redis Sentinel. Since Redis always uses the last processed
    # line as value of a configuration directive, you'd better put includes
    # at the beginning of this file to avoid overwriting config change at runtime.
    #注意,admin或Redis Sentinel的命令“CONFIG REWRITE”不会重写选项“include”。
    #由于Redis总是使用最后处理的行作为配置指令的值,
    #因此最好将includes放在该文件的开头,
    #以避免在运行时覆盖配置更改
    
    # If instead you are interested in using includes to override configuration
    # options, it is better to use include as the last line.
    #如果您对使用includes覆盖配置选项感兴趣最好使用include作为最后一行。
    #
    # include /path/to/local.conf
    # include /path/to/other.conf
    
    ################################## MODULES #####################################模块
    
    # Load modules at startup. If the server is not able to load modules
    # it will abort. It is possible to use multiple loadmodule directives.
    #启动时加载模块。如果服务器无法加载模块,它将中止。可以使用多个loadmodule指令。
    # loadmodule /path/to/my_module.so
    # loadmodule /path/to/other_module.so
    
    ################################## NETWORK #####################################网络
    
    # By default, if no "bind" configuration directive is specified, Redis listens
    # for connections from all the network interfaces available on the server.
    #默认情况下,如果未指定“绑定”配置指令,Redis将侦听服务器上可用的所有网络接口的连接。
    # It is possible to listen to just one or multiple selected interfaces using
    # the "bind" configuration directive, followed by one or more IP addresses.
    # 可以使用“bind”配置指令(后跟一个或多个IP地址)只侦听一个或多个选定的接口。
    # Examples:
    #
    # bind 192.168.1.100 10.0.0.1
    # bind 127.0.0.1 ::1
    #
    # ~~~ WARNING ~~~ If the computer running Redis is directly exposed to the
    # internet, binding to all the interfaces is dangerous and will expose the
    # instance to everybody on the internet. So by default we uncomment the
    # following bind directive, that will force Redis to listen only into
    # the IPv4 lookback interface address (this means Redis will be able to
    # accept connections only from clients running into the same computer it
    # is running).
    #如果运行Redis的计算机直接暴露在互联网上,绑定到所有接口是危险的,
    #会将实例暴露给互联网上的每个人。因此,默认情况下,我们取消注释下面的bind指令,
    #这将强制Redis只监听IPv4 lookback接口地址
    #(这意味着Redis将只能接受来自运行在同一台计算机上的客户端的连接)
    # IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES
    # JUST COMMENT THE FOLLOWING LINE. 如果您确定希望您的实例侦听所有接口,只需注释以下行
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    bind 127.0.0.1 #监听的IP地址段 可以配置多个
    
    # Protected mode is a layer of security protection, in order to avoid that
    # Redis instances left open on the internet are accessed and exploited.
    # 保护模式是一层安全保护,以避免Redis实例在internet上被访问和利用。
    # When protected mode is on and if:
    # 当保护模式开启时,如果
    # 1) The server is not binding explicitly to a set of addresses using the
    #    "bind" directive.
    # 服务器没有使用“bind”指令显式绑定到一组地址。
    # 2) No password is configured.未配置密码。
    #
    # The server only accepts connections from clients connecting from the
    # IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain
    # sockets.服务器仅接受来自从IPv4和IPv6环回地址127.0.0.1和::1连接的客户端的连接,以及来自Unix域套接字的连接
    #
    # By default protected mode is enabled. You should disable it only if
    # you are sure you want clients from other hosts to connect to Redis
    # even if no authentication is configured, nor a specific set of interfaces
    # are explicitly listed using the "bind" directive. 默认情况下,启用保护模式。
    #只有当您确定希望来自其他主机的客户端连接到Redis时才应该禁用它,
    #即使没有配置身份验证,也没有使用“bind”指令显式列出一组特定的接口。
    protected-mode yes #保护模式的开启
    
    # Accept connections on the specified port, default is 6379 (IANA #815344). 接受指定端口上的连接,默认值为6379(IANA#815344)。
    # If port 0 is specified Redis will not listen on a TCP socket. 如果指定了端口0,Redis将不会侦听TCP套接字。
    port 6379 #端口号
    
    # TCP listen() backlog.
    #
    # In high requests-per-second environments you need an high backlog in order
    # to avoid slow clients connections issues. Note that the Linux kernel
    # will silently truncate it to the value of /proc/sys/net/core/somaxconn so
    # make sure to raise both the value of somaxconn and tcp_max_syn_backlog
    # in order to get the desired effect.
    #在每秒请求数高的环境中,您需要一个高积压工作,以避免客户端连接速度慢的问题。
    #请注意,Linux内核将自动将其截断为/proc/sys/net/core/somaxconn的值,
    #因此请确保同时提高somaxconn和tcpu maxu synu backlog的值,以获得所需的效果。
    
    tcp-backlog 511 #redis是单线程的,指定高并发时访问排队的长度。超过后就呈现阻塞状态,可以理解是一个请求到达后
    #至到接受进程处理前的队列长度。高并发情况下可以适当提高。
    
    # Unix socket.
    #
    # Specify the path for the Unix socket that will be used to listen for
    # incoming connections. There is no default, so Redis will not listen
    # on a unix socket when not specified.
    #指定用于侦听传入连接的Unix套接字的路径。
    #没有默认值,因此Redis在未指定时不会侦听unix套接字。
    #
    # unixsocket /tmp/redis.sock
    # unixsocketperm 700
    
    # Close the connection after a client is idle for N seconds (0 to disable)
    #客户端空闲N秒后关闭连接(0表示禁用)
    timeout 0 # 设置客户端连接时的超时时间,单位为秒。当客户端在这段时间内没有发出任何指令,那么关闭该连接
    
    # TCP keepalive. TCP保持连接。
    #
    # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
    # of communication. This is useful for two reasons:
    # 如果非零,则在没有通信的情况下,使用SO_KEEPALIVE向客户端发送TCP确认。这有两个原因
    # 1) Detect dead peers. 检测死点
    # 2) Take the connection alive from the point of view of network
    #    equipment in the middle. 从中间的网络设备的角度来看待连接。
    #
    # On Linux, the specified value (in seconds) is the period used to send ACKs. 在Linux上,指定的值(以秒为单位)是用于发送ACK的时间段。
    # Note that to close the connection the double of the time is needed. 请注意,要关闭连接,需要两倍的时间。
    # On other kernels the period depends on the kernel configuration. 在其他内核上,周期取决于内核配置。
    #
    # A reasonable value for this option is 300 seconds, which is the new
    # Redis default starting with Redis 3.2.1. 此选项的合理值为300秒,这是从Redis 3.2.1开始的新Redis默认值。
    tcp-keepalive 300 #于发送ACK的时间段 对客户端的心跳检测间隔时间
    
    ################################# GENERAL ##################################### 总则
    
    # By default Redis does not run as a daemon. Use 'yes' if you need it. 默认情况下,Redis不作为守护进程运行。如果需要,请使用“是”。
    # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. 注意Redis将在/var/run中编写一个pid文件/redis.pid当守护的时候。
    daemonize no #是否开启守护进程方式运行
    
    # If you run Redis from upstart or systemd, Redis can interact with your
    # supervision tree. Options: 如果您从upstart或systemd运行Redis,Redis可以与您的监控树交互。
    #   supervised no      - no supervision interaction 无监督互动
    #   supervised upstart - signal upstart by putting Redis into SIGSTOP mode 通过将Redis置于SIGSTOP模式来向upstart发送信号
    #   supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET 通过写入READY=1到$NOTIFYu插座的信号系统
    #   supervised auto    - detect upstart or systemd method based on
    #                        UPSTART_JOB or NOTIFY_SOCKET environment variables #基于upstartu JOB或NOTIFYu SOCKET环境变量检测upstart或systemd方法
    # Note: these supervision methods only signal "process is ready." 注:这些监督方法仅表示“过程准备就绪”
    #       They do not enable continuous liveness pings back to your supervisor. 它们不会使连续的活动ping返回给您的主管。
    supervised no
    
    # If a pid file is specified, Redis writes it where specified at startup
    # and removes it at exit. 如果指定了pid文件,Redis会在启动时将其写入指定的位置,并在退出时将其删除。
    #
    # When the server runs non daemonized, no pid file is created if none is
    # specified in the configuration. When the server is daemonized, the pid file
    # is used even if not specified, defaulting to "/var/run/redis.pid".
    #当服务器运行非守护进程时,如果配置中未指定任何pid文件,则不会创建任何pid文件。
    #服务器被后台监控时,即使未指定pid文件,也会使用该文件,默认为“/var/run”/redis.pid".
    # Creating a pid file is best effort: if Redis is not able to create it
    # nothing bad happens, the server will start and run normally. 创建一个pid文件是最好的努力:
    #如果Redis不能创建它,没有什么不好的事情发生,服务器将正常启动和运行。
    pidfile /var/run/redis_6379.pid
    
    # Specify the server verbosity level. #指定服务器详细级别。
    # This can be one of: #这可能是
    # debug (a lot of information, useful for development/testing) #调试(大量信息,对开发/测试有用)
    # verbose (many rarely useful info, but not a mess like the debug level)
    # notice (moderately verbose, what you want in production probably)
    # warning (only very important / critical messages are logged)
    loglevel notice #定义日志级别
    # debug 记录大量日志信息 适用于开发、测试阶段
    #verbose 较多日志信息
    # notice 适量日志信息,适用于生产环境
    #warning 仅有部分重要、关键信息时才会被记录
    
    # Specify the log file name. Also the empty string can be used to force
    # Redis to log on the standard output. Note that if you use standard
    # output for logging but daemonize, logs will be sent to /dev/null
    logfile "" #日志文件的位置  ,当指定为空字符串时,为标准输出,如果是守护进程方式启动 则输出到/dev/null
    
    # To enable logging to the system logger, just set 'syslog-enabled' to yes,
    # and optionally update the other syslog parameters to suit your needs.
    # syslog-enabled no 是否记录到系统日志
    
    # Specify the syslog identity.
    # syslog-ident redis 设置系统日志的ID
    
    # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
    # syslog-facility local0 必须是USER或者local0-local7之间的值
    
    # Set the number of databases. The default database is DB 0, you can select
    # a different one on a per-connection basis using SELECT <dbid> where
    # dbid is a number between 0 and 'databases'-1
    databases 16 设置数据库数量
    
    # By default Redis shows an ASCII art logo only when started to log to the
    # standard output and if the standard output is a TTY. Basically this means
    # that normally a logo is displayed only in interactive sessions.
    #
    # However it is possible to force the pre-4.0 behavior and always show a
    # ASCII art logo in startup logs by setting the following option to yes.
    always-show-logo yes
    
    ################################ SNAPSHOTTING  ################################
    #
    # Save the DB on disk:
    #
    #   save <seconds> <changes>
    #
    #   Will save the DB if both the given number of seconds and the given
    #   number of write operations against the DB occurred.
    #
    #   In the example below the behaviour will be to save:
    #   after 900 sec (15 min) if at least 1 key changed
    #   after 300 sec (5 min) if at least 10 keys changed
    #   after 60 sec if at least 10000 keys changed
    #
    #   Note: you can disable saving completely by commenting out all "save" lines.
    #
    #   It is also possible to remove all the previously configured save
    #   points by adding a save directive with a single empty string argument
    #   like in the following example:
    #
    #   save ""
    
    save 900 1
    save 300 10
    save 60 10000
    
    # By default Redis will stop accepting writes if RDB snapshots are enabled
    # (at least one save point) and the latest background save failed.
    # This will make the user aware (in a hard way) that data is not persisting
    # on disk properly, otherwise chances are that no one will notice and some
    # disaster will happen.
    #
    # If the background saving process will start working again Redis will
    # automatically allow writes again.
    #
    # However if you have setup your proper monitoring of the Redis server
    # and persistence, you may want to disable this feature so that Redis will
    # continue to work as usual even if there are problems with disk,
    # permissions, and so forth.
    stop-writes-on-bgsave-error yes
    
    # Compress string objects using LZF when dump .rdb databases?
    # For default that's set to 'yes' as it's almost always a win.
    # If you want to save some CPU in the saving child set it to 'no' but
    # the dataset will likely be bigger if you have compressible values or keys.
    rdbcompression yes
    
    # Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
    # This makes the format more resistant to corruption but there is a performance
    # hit to pay (around 10%) when saving and loading RDB files, so you can disable it
    # for maximum performances.
    #
    # RDB files created with checksum disabled have a checksum of zero that will
    # tell the loading code to skip the check.
    rdbchecksum yes
    
    # The filename where to dump the DB
    dbfilename dump.rdb
    
    # The working directory.
    #
    # The DB will be written inside this directory, with the filename specified
    # above using the 'dbfilename' configuration directive.
    #
    # The Append Only File will also be created inside this directory.
    #
    # Note that you must specify a directory here, not a file name.
    dir ./
    
    ################################# REPLICATION #################################
    
    # Master-Slave replication. Use slaveof to make a Redis instance a copy of
    # another Redis server. A few things to understand ASAP about Redis replication.
    #
    # 1) Redis replication is asynchronous, but you can configure a master to
    #    stop accepting writes if it appears to be not connected with at least
    #    a given number of slaves.
    # 2) Redis slaves are able to perform a partial resynchronization with the
    #    master if the replication link is lost for a relatively small amount of
    #    time. You may want to configure the replication backlog size (see the next
    #    sections of this file) with a sensible value depending on your needs.
    # 3) Replication is automatic and does not need user intervention. After a
    #    network partition slaves automatically try to reconnect to masters
    #    and resynchronize with them.
    #
    # slaveof <masterip> <masterport>
    
    # If the master is password protected (using the "requirepass" configuration
    # directive below) it is possible to tell the slave to authenticate before
    # starting the replication synchronization process, otherwise the master will
    # refuse the slave request.
    #
    # masterauth <master-password>
    
    # When a slave loses its connection with the master, or when the replication
    # is still in progress, the slave can act in two different ways:
    #
    # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
    #    still reply to client requests, possibly with out of date data, or the
    #    data set may just be empty if this is the first synchronization.
    #
    # 2) if slave-serve-stale-data is set to 'no' the slave will reply with
    #    an error "SYNC with master in progress" to all the kind of commands
    #    but to INFO and SLAVEOF.
    #
    slave-serve-stale-data yes
    
    # You can configure a slave instance to accept writes or not. Writing against
    # a slave instance may be useful to store some ephemeral data (because data
    # written on a slave will be easily deleted after resync with the master) but
    # may also cause problems if clients are writing to it because of a
    # misconfiguration.
    #
    # Since Redis 2.6 by default slaves are read-only.
    #
    # Note: read only slaves are not designed to be exposed to untrusted clients
    # on the internet. It's just a protection layer against misuse of the instance.
    # Still a read only slave exports by default all the administrative commands
    # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
    # security of read only slaves using 'rename-command' to shadow all the
    # administrative / dangerous commands.
    slave-read-only yes
    
    # Replication SYNC strategy: disk or socket.
    #
    # -------------------------------------------------------
    # WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
    # -------------------------------------------------------
    #
    # New slaves and reconnecting slaves that are not able to continue the replication
    # process just receiving differences, need to do what is called a "full
    # synchronization". An RDB file is transmitted from the master to the slaves.
    # The transmission can happen in two different ways:
    #
    # 1) Disk-backed: The Redis master creates a new process that writes the RDB
    #                 file on disk. Later the file is transferred by the parent
    #                 process to the slaves incrementally.
    # 2) Diskless: The Redis master creates a new process that directly writes the
    #              RDB file to slave sockets, without touching the disk at all.
    #
    # With disk-backed replication, while the RDB file is generated, more slaves
    # can be queued and served with the RDB file as soon as the current child producing
    # the RDB file finishes its work. With diskless replication instead once
    # the transfer starts, new slaves arriving will be queued and a new transfer
    # will start when the current one terminates.
    #
    # When diskless replication is used, the master waits a configurable amount of
    # time (in seconds) before starting the transfer in the hope that multiple slaves
    # will arrive and the transfer can be parallelized.
    #
    # With slow disks and fast (large bandwidth) networks, diskless replication
    # works better.
    repl-diskless-sync no
    
    # When diskless replication is enabled, it is possible to configure the delay
    # the server waits in order to spawn the child that transfers the RDB via socket
    # to the slaves.
    #
    # This is important since once the transfer starts, it is not possible to serve
    # new slaves arriving, that will be queued for the next RDB transfer, so the server
    # waits a delay in order to let more slaves arrive.
    #
    # The delay is specified in seconds, and by default is 5 seconds. To disable
    # it entirely just set it to 0 seconds and the transfer will start ASAP.
    repl-diskless-sync-delay 5
    
    # Slaves send PINGs to server in a predefined interval. It's possible to change
    # this interval with the repl_ping_slave_period option. The default value is 10
    # seconds.
    #
    # repl-ping-slave-period 10
    
    # The following option sets the replication timeout for:
    #
    # 1) Bulk transfer I/O during SYNC, from the point of view of slave.
    # 2) Master timeout from the point of view of slaves (data, pings).
    # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
    #
    # It is important to make sure that this value is greater than the value
    # specified for repl-ping-slave-period otherwise a timeout will be detected
    # every time there is low traffic between the master and the slave.
    #
    # repl-timeout 60
    
    # Disable TCP_NODELAY on the slave socket after SYNC?
    #
    # If you select "yes" Redis will use a smaller number of TCP packets and
    # less bandwidth to send data to slaves. But this can add a delay for
    # the data to appear on the slave side, up to 40 milliseconds with
    # Linux kernels using a default configuration.
    #
    # If you select "no" the delay for data to appear on the slave side will
    # be reduced but more bandwidth will be used for replication.
    #
    # By default we optimize for low latency, but in very high traffic conditions
    # or when the master and slaves are many hops away, turning this to "yes" may
    # be a good idea.
    repl-disable-tcp-nodelay no
    
    # Set the replication backlog size. The backlog is a buffer that accumulates
    # slave data when slaves are disconnected for some time, so that when a slave
    # wants to reconnect again, often a full resync is not needed, but a partial
    # resync is enough, just passing the portion of data the slave missed while
    # disconnected.
    #
    # The bigger the replication backlog, the longer the time the slave can be
    # disconnected and later be able to perform a partial resynchronization.
    #
    # The backlog is only allocated once there is at least a slave connected.
    #
    # repl-backlog-size 1mb
    
    # After a master has no longer connected slaves for some time, the backlog
    # will be freed. The following option configures the amount of seconds that
    # need to elapse, starting from the time the last slave disconnected, for
    # the backlog buffer to be freed.
    #
    # Note that slaves never free the backlog for timeout, since they may be
    # promoted to masters later, and should be able to correctly "partially
    # resynchronize" with the slaves: hence they should always accumulate backlog.
    #
    # A value of 0 means to never release the backlog.
    #
    # repl-backlog-ttl 3600
    
    # The slave priority is an integer number published by Redis in the INFO output.
    # It is used by Redis Sentinel in order to select a slave to promote into a
    # master if the master is no longer working correctly.
    #
    # A slave with a low priority number is considered better for promotion, so
    # for instance if there are three slaves with priority 10, 100, 25 Sentinel will
    # pick the one with priority 10, that is the lowest.
    #
    # However a special priority of 0 marks the slave as not able to perform the
    # role of master, so a slave with priority of 0 will never be selected by
    # Redis Sentinel for promotion.
    #
    # By default the priority is 100.
    slave-priority 100
    
    # It is possible for a master to stop accepting writes if there are less than
    # N slaves connected, having a lag less or equal than M seconds.
    #
    # The N slaves need to be in "online" state.
    #
    # The lag in seconds, that must be <= the specified value, is calculated from
    # the last ping received from the slave, that is usually sent every second.
    #
    # This option does not GUARANTEE that N replicas will accept the write, but
    # will limit the window of exposure for lost writes in case not enough slaves
    # are available, to the specified number of seconds.
    #
    # For example to require at least 3 slaves with a lag <= 10 seconds use:
    #
    # min-slaves-to-write 3
    # min-slaves-max-lag 10
    #
    # Setting one or the other to 0 disables the feature.
    #
    # By default min-slaves-to-write is set to 0 (feature disabled) and
    # min-slaves-max-lag is set to 10.
    
    # A Redis master is able to list the address and port of the attached
    # slaves in different ways. For example the "INFO replication" section
    # offers this information, which is used, among other tools, by
    # Redis Sentinel in order to discover slave instances.
    # Another place where this info is available is in the output of the
    # "ROLE" command of a master.
    #
    # The listed IP and address normally reported by a slave is obtained
    # in the following way:
    #
    #   IP: The address is auto detected by checking the peer address
    #   of the socket used by the slave to connect with the master.
    #
    #   Port: The port is communicated by the slave during the replication
    #   handshake, and is normally the port that the slave is using to
    #   list for connections.
    #
    # However when port forwarding or Network Address Translation (NAT) is
    # used, the slave may be actually reachable via different IP and port
    # pairs. The following two options can be used by a slave in order to
    # report to its master a specific set of IP and port, so that both INFO
    # and ROLE will report those values.
    #
    # There is no need to use both the options if you need to override just
    # the port or the IP address.
    #
    # slave-announce-ip 5.5.5.5
    # slave-announce-port 1234
    
    ################################## SECURITY ###################################
    
    # Require clients to issue AUTH <PASSWORD> before processing any other
    # commands.  This might be useful in environments in which you do not trust
    # others with access to the host running redis-server.
    #
    # This should stay commented out for backward compatibility and because most
    # people do not need auth (e.g. they run their own servers).
    #
    # Warning: since Redis is pretty fast an outside user can try up to
    # 150k passwords per second against a good box. This means that you should
    # use a very strong password otherwise it will be very easy to break.
    #
    # requirepass foobared 设置密码
    
    # Command renaming.
    #
    # It is possible to change the name of dangerous commands in a shared
    # environment. For instance the CONFIG command may be renamed into something
    # hard to guess so that it will still be available for internal-use tools
    # but not available for general clients.
    #
    # Example:
    #
    # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
    #
    # It is also possible to completely kill a command by renaming it into
    # an empty string:
    #
    # rename-command CONFIG ""
    #
    # Please note that changing the name of commands that are logged into the
    # AOF file or transmitted to slaves may cause problems.
    
    ################################### CLIENTS ####################################
    
    # Set the max number of connected clients at the same time. By default
    # this limit is set to 10000 clients, however if the Redis server is not
    # able to configure the process file limit to allow for the specified limit
    # the max number of allowed clients is set to the current file limit
    # minus 32 (as Redis reserves a few file descriptors for internal uses).
    #
    # Once the limit is reached Redis will close all the new connections sending
    # an error 'max number of clients reached'.
    #
    # maxclients 10000 允许客户端连接的数量
    
    ############################## MEMORY MANAGEMENT ################################
    
    # Set a memory usage limit to the specified amount of bytes.
    # When the memory limit is reached Redis will try to remove keys
    # according to the eviction policy selected (see maxmemory-policy).
    #
    # If Redis can't remove keys according to the policy, or if the policy is
    # set to 'noeviction', Redis will start to reply with errors to commands
    # that would use more memory, like SET, LPUSH, and so on, and will continue
    # to reply to read-only commands like GET.
    #
    # This option is usually useful when using Redis as an LRU or LFU cache, or to
    # set a hard memory limit for an instance (using the 'noeviction' policy).
    #
    # WARNING: If you have slaves attached to an instance with maxmemory on,
    # the size of the output buffers needed to feed the slaves are subtracted
    # from the used memory count, so that network problems / resyncs will
    # not trigger a loop where keys are evicted, and in turn the output
    # buffer of slaves is full with DELs of keys evicted triggering the deletion
    # of more keys, and so forth until the database is completely emptied.
    #
    # In short... if you have slaves attached it is suggested that you set a lower
    # limit for maxmemory so that there is some free RAM on the system for slave
    # output buffers (but this is not needed if the policy is 'noeviction').
    #
    maxmemory <bytes> 最大占用内存
    #一旦占用内存超限,就开始根据缓存清理策略移除数据,如果redis无法限制移除规则来移除内存中的数据,
    #或者设置了不允许移除,那么redis则会针对那些需要申请内存的指令返回错误信息。
    
    # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
    # is reached. You can select among five behaviors:
    #
    # volatile-lru -> Evict using approximated LRU among the keys with an expire set.
    # allkeys-lru -> Evict any key using approximated LRU.
    # volatile-lfu -> Evict using approximated LFU among the keys with an expire set.
    # allkeys-lfu -> Evict any key using approximated LFU.
    # volatile-random -> Remove a random key among the ones with an expire set.
    # allkeys-random -> Remove a random key, any key.
    # volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
    # noeviction -> Don't evict anything, just return an error on write operations.
    #
    # LRU means Least Recently Used
    # LFU means Least Frequently Used
    #
    # Both LRU, LFU and volatile-ttl are implemented using approximated
    # randomized algorithms.
    #
    # Note: with any of the above policies, Redis will return an error on write
    #       operations, when there are no suitable keys for eviction.
    #
    #       At the date of writing these commands are: set setnx setex append
    #       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
    #       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
    #       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
    #       getset mset msetnx exec sort
    #
    # The default is:
    #
    # maxmemory-policy noeviction 缓存清理策略
    #(1)volatile-lru:使用 LRU 算法移除 key,只对设置了过期时间的键
    #(2)allkeys-lru:使用 LRU 算法移除 key
    #(3)volatile-random:在过期集合中移除随机的 key,只对设置了过期时间的键
    #(4)allkeys-random:移除随机的 key
    #(5)volatile-ttl:移除那些 TTL 值最小的 key,即那些最近要过期的key
    #(6)noeviction:不进行移除。针对写操作,只是返回错误信息
    
    # LRU, LFU and minimal TTL algorithms are not precise algorithms but approximated
    # algorithms (in order to save memory), so you can tune it for speed or
    # accuracy. For default Redis will check five keys and pick the one that was
    # used less recently, you can change the sample size using the following
    # configuration directive.
    #
    # The default of 5 produces good enough results. 10 Approximates very closely
    # true LRU but costs more CPU. 3 is faster but not very accurate.
    #
    # maxmemory-samples 5 #样本数
    
    ############################# LAZY FREEING ####################################
    
    # Redis has two primitives to delete keys. One is called DEL and is a blocking
    # deletion of the object. It means that the server stops processing new commands
    # in order to reclaim all the memory associated with an object in a synchronous
    # way. If the key deleted is associated with a small object, the time needed
    # in order to execute the DEL command is very small and comparable to most other
    # O(1) or O(log_N) commands in Redis. However if the key is associated with an
    # aggregated value containing millions of elements, the server can block for
    # a long time (even seconds) in order to complete the operation.
    #
    # For the above reasons Redis also offers non blocking deletion primitives
    # such as UNLINK (non blocking DEL) and the ASYNC option of FLUSHALL and
    # FLUSHDB commands, in order to reclaim memory in background. Those commands
    # are executed in constant time. Another thread will incrementally free the
    # object in the background as fast as possible.
    #
    # DEL, UNLINK and ASYNC option of FLUSHALL and FLUSHDB are user-controlled.
    # It's up to the design of the application to understand when it is a good
    # idea to use one or the other. However the Redis server sometimes has to
    # delete keys or flush the whole database as a side effect of other operations.
    # Specifically Redis deletes objects independently of a user call in the
    # following scenarios:
    #
    # 1) On eviction, because of the maxmemory and maxmemory policy configurations,
    #    in order to make room for new data, without going over the specified
    #    memory limit.
    # 2) Because of expire: when a key with an associated time to live (see the
    #    EXPIRE command) must be deleted from memory.
    # 3) Because of a side effect of a command that stores data on a key that may
    #    already exist. For example the RENAME command may delete the old key
    #    content when it is replaced with another one. Similarly SUNIONSTORE
    #    or SORT with STORE option may delete existing keys. The SET command
    #    itself removes any old content of the specified key in order to replace
    #    it with the specified string.
    # 4) During replication, when a slave performs a full resynchronization with
    #    its master, the content of the whole database is removed in order to
    #    load the RDB file just transfered.
    #
    # In all the above cases the default is to delete objects in a blocking way,
    # like if DEL was called. However you can configure each case specifically
    # in order to instead release memory in a non-blocking way like if UNLINK
    # was called, using the following configuration directives:
    
    lazyfree-lazy-eviction no
    lazyfree-lazy-expire no
    lazyfree-lazy-server-del no
    slave-lazy-flush no
    
    ############################## APPEND ONLY MODE ###############################
    
    # By default Redis asynchronously dumps the dataset on disk. This mode is
    # good enough in many applications, but an issue with the Redis process or
    # a power outage may result into a few minutes of writes lost (depending on
    # the configured save points).
    #
    # The Append Only File is an alternative persistence mode that provides
    # much better durability. For instance using the default data fsync policy
    # (see later in the config file) Redis can lose just one second of writes in a
    # dramatic event like a server power outage, or a single write if something
    # wrong with the Redis process itself happens, but the operating system is
    # still running correctly.
    #
    # AOF and RDB persistence can be enabled at the same time without problems.
    # If the AOF is enabled on startup Redis will load the AOF, that is the file
    # with the better durability guarantees.
    #
    # Please check http://redis.io/topics/persistence for more information.
    
    appendonly no
    
    # The name of the append only file (default: "appendonly.aof")
    
    appendfilename "appendonly.aof"
    
    # The fsync() call tells the Operating System to actually write data on disk
    # instead of waiting for more data in the output buffer. Some OS will really flush
    # data on disk, some other OS will just try to do it ASAP.
    #
    # Redis supports three different modes:
    #
    # no: don't fsync, just let the OS flush the data when it wants. Faster.
    # always: fsync after every write to the append only log. Slow, Safest.
    # everysec: fsync only one time every second. Compromise.
    #
    # The default is "everysec", as that's usually the right compromise between
    # speed and data safety. It's up to you to understand if you can relax this to
    # "no" that will let the operating system flush the output buffer when
    # it wants, for better performances (but if you can live with the idea of
    # some data loss consider the default persistence mode that's snapshotting),
    # or on the contrary, use "always" that's very slow but a bit safer than
    # everysec.
    #
    # More details please check the following article:
    # http://antirez.com/post/redis-persistence-demystified.html
    #
    # If unsure, use "everysec".
    
    # appendfsync always
    appendfsync everysec
    # appendfsync no
    
    # When the AOF fsync policy is set to always or everysec, and a background
    # saving process (a background save or AOF log background rewriting) is
    # performing a lot of I/O against the disk, in some Linux configurations
    # Redis may block too long on the fsync() call. Note that there is no fix for
    # this currently, as even performing fsync in a different thread will block
    # our synchronous write(2) call.
    #
    # In order to mitigate this problem it's possible to use the following option
    # that will prevent fsync() from being called in the main process while a
    # BGSAVE or BGREWRITEAOF is in progress.
    #
    # This means that while another child is saving, the durability of Redis is
    # the same as "appendfsync none". In practical terms, this means that it is
    # possible to lose up to 30 seconds of log in the worst scenario (with the
    # default Linux settings).
    #
    # If you have latency problems turn this to "yes". Otherwise leave it as
    # "no" that is the safest pick from the point of view of durability.
    
    no-appendfsync-on-rewrite no
    
    # Automatic rewrite of the append only file.
    # Redis is able to automatically rewrite the log file implicitly calling
    # BGREWRITEAOF when the AOF log size grows by the specified percentage.
    #
    # This is how it works: Redis remembers the size of the AOF file after the
    # latest rewrite (if no rewrite has happened since the restart, the size of
    # the AOF at startup is used).
    #
    # This base size is compared to the current size. If the current size is
    # bigger than the specified percentage, the rewrite is triggered. Also
    # you need to specify a minimal size for the AOF file to be rewritten, this
    # is useful to avoid rewriting the AOF file even if the percentage increase
    # is reached but it is still pretty small.
    #
    # Specify a percentage of zero in order to disable the automatic AOF
    # rewrite feature.
    
    auto-aof-rewrite-percentage 100
    auto-aof-rewrite-min-size 64mb
    
    # An AOF file may be found to be truncated at the end during the Redis
    # startup process, when the AOF data gets loaded back into memory.
    # This may happen when the system where Redis is running
    # crashes, especially when an ext4 filesystem is mounted without the
    # data=ordered option (however this can't happen when Redis itself
    # crashes or aborts but the operating system still works correctly).
    #
    # Redis can either exit with an error when this happens, or load as much
    # data as possible (the default now) and start if the AOF file is found
    # to be truncated at the end. The following option controls this behavior.
    #
    # If aof-load-truncated is set to yes, a truncated AOF file is loaded and
    # the Redis server starts emitting a log to inform the user of the event.
    # Otherwise if the option is set to no, the server aborts with an error
    # and refuses to start. When the option is set to no, the user requires
    # to fix the AOF file using the "redis-check-aof" utility before to restart
    # the server.
    #
    # Note that if the AOF file will be found to be corrupted in the middle
    # the server will still exit with an error. This option only applies when
    # Redis will try to read more data from the AOF file but not enough bytes
    # will be found.
    aof-load-truncated yes
    
    # When rewriting the AOF file, Redis is able to use an RDB preamble in the
    # AOF file for faster rewrites and recoveries. When this option is turned
    # on the rewritten AOF file is composed of two different stanzas:
    #
    #   [RDB file][AOF tail]
    #
    # When loading Redis recognizes that the AOF file starts with the "REDIS"
    # string and loads the prefixed RDB file, and continues loading the AOF
    # tail.
    #
    # This is currently turned off by default in order to avoid the surprise
    # of a format change, but will at some point be used as the default.
    aof-use-rdb-preamble no
    
    ################################ LUA SCRIPTING  ###############################
    
    # Max execution time of a Lua script in milliseconds.
    #
    # If the maximum execution time is reached Redis will log that a script is
    # still in execution after the maximum allowed time and will start to
    # reply to queries with an error.
    #
    # When a long running script exceeds the maximum execution time only the
    # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
    # used to stop a script that did not yet called write commands. The second
    # is the only way to shut down the server in the case a write command was
    # already issued by the script but the user doesn't want to wait for the natural
    # termination of the script.
    #
    # Set it to 0 or a negative value for unlimited execution without warnings.
    lua-time-limit 5000
    
    ################################ REDIS CLUSTER  ###############################
    #
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however
    # in order to mark it as "mature" we need to wait for a non trivial percentage
    # of users to deploy it in production.
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    #
    # Normal Redis instances can't be part of a Redis Cluster; only nodes that are
    # started as cluster nodes can. In order to start a Redis instance as a
    # cluster node enable the cluster support uncommenting the following:
    #
    # cluster-enabled yes
    
    # Every cluster node has a cluster configuration file. This file is not
    # intended to be edited by hand. It is created and updated by Redis nodes.
    # Every Redis Cluster node requires a different cluster configuration file.
    # Make sure that instances running in the same system do not have
    # overlapping cluster configuration file names.
    #
    # cluster-config-file nodes-6379.conf
    
    # Cluster node timeout is the amount of milliseconds a node must be unreachable
    # for it to be considered in failure state.
    # Most other internal time limits are multiple of the node timeout.
    #
    # cluster-node-timeout 15000
    
    # A slave of a failing master will avoid to start a failover if its data
    # looks too old.
    #
    # There is no simple way for a slave to actually have an exact measure of
    # its "data age", so the following two checks are performed:
    #
    # 1) If there are multiple slaves able to failover, they exchange messages
    #    in order to try to give an advantage to the slave with the best
    #    replication offset (more data from the master processed).
    #    Slaves will try to get their rank by offset, and apply to the start
    #    of the failover a delay proportional to their rank.
    #
    # 2) Every single slave computes the time of the last interaction with
    #    its master. This can be the last ping or command received (if the master
    #    is still in the "connected" state), or the time that elapsed since the
    #    disconnection with the master (if the replication link is currently down).
    #    If the last interaction is too old, the slave will not try to failover
    #    at all.
    #
    # The point "2" can be tuned by user. Specifically a slave will not perform
    # the failover if, since the last interaction with the master, the time
    # elapsed is greater than:
    #
    #   (node-timeout * slave-validity-factor) + repl-ping-slave-period
    #
    # So for example if node-timeout is 30 seconds, and the slave-validity-factor
    # is 10, and assuming a default repl-ping-slave-period of 10 seconds, the
    # slave will not try to failover if it was not able to talk with the master
    # for longer than 310 seconds.
    #
    # A large slave-validity-factor may allow slaves with too old data to failover
    # a master, while a too small value may prevent the cluster from being able to
    # elect a slave at all.
    #
    # For maximum availability, it is possible to set the slave-validity-factor
    # to a value of 0, which means, that slaves will always try to failover the
    # master regardless of the last time they interacted with the master.
    # (However they'll always try to apply a delay proportional to their
    # offset rank).
    #
    # Zero is the only value able to guarantee that when all the partitions heal
    # the cluster will always be able to continue.
    #
    # cluster-slave-validity-factor 10
    
    # Cluster slaves are able to migrate to orphaned masters, that are masters
    # that are left without working slaves. This improves the cluster ability
    # to resist to failures as otherwise an orphaned master can't be failed over
    # in case of failure if it has no working slaves.
    #
    # Slaves migrate to orphaned masters only if there are still at least a
    # given number of other working slaves for their old master. This number
    # is the "migration barrier". A migration barrier of 1 means that a slave
    # will migrate only if there is at least 1 other working slave for its master
    # and so forth. It usually reflects the number of slaves you want for every
    # master in your cluster.
    #
    # Default is 1 (slaves migrate only if their masters remain with at least
    # one slave). To disable migration just set it to a very large value.
    # A value of 0 can be set but is useful only for debugging and dangerous
    # in production.
    #
    # cluster-migration-barrier 1
    
    # By default Redis Cluster nodes stop accepting queries if they detect there
    # is at least an hash slot uncovered (no available node is serving it).
    # This way if the cluster is partially down (for example a range of hash slots
    # are no longer covered) all the cluster becomes, eventually, unavailable.
    # It automatically returns available as soon as all the slots are covered again.
    #
    # However sometimes you want the subset of the cluster which is working,
    # to continue to accept queries for the part of the key space that is still
    # covered. In order to do so, just set the cluster-require-full-coverage
    # option to no.
    #
    # cluster-require-full-coverage yes
    
    # In order to setup your cluster make sure to read the documentation
    # available at http://redis.io web site.
    
    ########################## CLUSTER DOCKER/NAT support  ########################
    
    # In certain deployments, Redis Cluster nodes address discovery fails, because
    # addresses are NAT-ted or because ports are forwarded (the typical case is
    # Docker and other containers).
    #
    # In order to make Redis Cluster working in such environments, a static
    # configuration where each node knows its public address is needed. The
    # following two options are used for this scope, and are:
    #
    # * cluster-announce-ip
    # * cluster-announce-port
    # * cluster-announce-bus-port
    #
    # Each instruct the node about its address, client port, and cluster message
    # bus port. The information is then published in the header of the bus packets
    # so that other nodes will be able to correctly map the address of the node
    # publishing the information.
    #
    # If the above options are not used, the normal Redis Cluster auto-detection
    # will be used instead.
    #
    # Note that when remapped, the bus port may not be at the fixed offset of
    # clients port + 10000, so you can specify any port and bus-port depending
    # on how they get remapped. If the bus-port is not set, a fixed offset of
    # 10000 will be used as usually.
    #
    # Example:
    #
    # cluster-announce-ip 10.1.1.5
    # cluster-announce-port 6379
    # cluster-announce-bus-port 6380
    
    ################################## SLOW LOG ################################### 慢日志
    
    # The Redis Slow Log is a system to log queries that exceeded a specified
    # execution time. The execution time does not include the I/O operations
    # like talking with the client, sending the reply and so forth,
    # but just the time needed to actually execute the command (this is the only
    # stage of command execution where the thread is blocked and can not serve
    # other requests in the meantime).
    #
    # You can configure the slow log with two parameters: one tells Redis
    # what is the execution time, in microseconds, to exceed in order for the
    # command to get logged, and the other parameter is the length of the
    # slow log. When a new command is logged the oldest one is removed from the
    # queue of logged commands.
    
    # The following time is expressed in microseconds, so 1000000 is equivalent
    # to one second. Note that a negative number disables the slow log, while
    # a value of zero forces the logging of every command.
    slowlog-log-slower-than 10000 单位微妙,超过这个执行时间将会记录日志
    
    # There is no limit to this length. Just be aware that it will consume memory.
    # You can reclaim memory used by the slow log with SLOWLOG RESET.
    slowlog-max-len 128
    
    ################################ LATENCY MONITOR ##############################
    
    # The Redis latency monitoring subsystem samples different operations
    # at runtime in order to collect data related to possible sources of
    # latency of a Redis instance.
    #
    # Via the LATENCY command this information is available to the user that can
    # print graphs and obtain reports.
    #
    # The system only logs operations that were performed in a time equal or
    # greater than the amount of milliseconds specified via the
    # latency-monitor-threshold configuration directive. When its value is set
    # to zero, the latency monitor is turned off.
    #
    # By default latency monitoring is disabled since it is mostly not needed
    # if you don't have latency issues, and collecting data has a performance
    # impact, that while very small, can be measured under big load. Latency
    # monitoring can easily be enabled at runtime using the command
    # "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.
    latency-monitor-threshold 0
    
    ############################# EVENT NOTIFICATION ##############################
    
    # Redis can notify Pub/Sub clients about events happening in the key space.
    # This feature is documented at http://redis.io/topics/notifications
    #
    # For instance if keyspace events notification is enabled, and a client
    # performs a DEL operation on key "foo" stored in the Database 0, two
    # messages will be published via Pub/Sub:
    #
    # PUBLISH __keyspace@0__:foo del
    # PUBLISH __keyevent@0__:del foo
    #
    # It is possible to select the events that Redis will notify among a set
    # of classes. Every class is identified by a single character:
    #
    #  K     Keyspace events, published with __keyspace@<db>__ prefix.
    #  E     Keyevent events, published with __keyevent@<db>__ prefix.
    #  g     Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
    #  $     String commands
    #  l     List commands
    #  s     Set commands
    #  h     Hash commands
    #  z     Sorted set commands
    #  x     Expired events (events generated every time a key expires)
    #  e     Evicted events (events generated when a key is evicted for maxmemory)
    #  A     Alias for g$lshzxe, so that the "AKE" string means all the events.
    #
    #  The "notify-keyspace-events" takes as argument a string that is composed
    #  of zero or multiple characters. The empty string means that notifications
    #  are disabled.
    #
    #  Example: to enable list and generic events, from the point of view of the
    #           event name, use:
    #
    #  notify-keyspace-events Elg
    #
    #  Example 2: to get the stream of the expired keys subscribing to channel
    #             name __keyevent@0__:expired use:
    #
    #  notify-keyspace-events Ex
    #
    #  By default all notifications are disabled because most users don't need
    #  this feature and the feature has some overhead. Note that if you don't
    #  specify at least one of K or E, no events will be delivered.
    notify-keyspace-events ""
    
    ############################### ADVANCED CONFIG ###############################
    
    # Hashes are encoded using a memory efficient data structure when they have a
    # small number of entries, and the biggest entry does not exceed a given
    # threshold. These thresholds can be configured using the following directives.
    hash-max-ziplist-entries 512
    hash-max-ziplist-value 64
    
    # Lists are also encoded in a special way to save a lot of space.
    # The number of entries allowed per internal list node can be specified
    # as a fixed maximum size or a maximum number of elements.
    # For a fixed maximum size, use -5 through -1, meaning:
    # -5: max size: 64 Kb  <-- not recommended for normal workloads
    # -4: max size: 32 Kb  <-- not recommended
    # -3: max size: 16 Kb  <-- probably not recommended
    # -2: max size: 8 Kb   <-- good
    # -1: max size: 4 Kb   <-- good
    # Positive numbers mean store up to _exactly_ that number of elements
    # per list node.
    # The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size),
    # but if your use case is unique, adjust the settings as necessary.
    list-max-ziplist-size -2
    
    # Lists may also be compressed.
    # Compress depth is the number of quicklist ziplist nodes from *each* side of
    # the list to *exclude* from compression.  The head and tail of the list
    # are always uncompressed for fast push/pop operations.  Settings are:
    # 0: disable all list compression
    # 1: depth 1 means "don't start compressing until after 1 node into the list,
    #    going from either the head or tail"
    #    So: [head]->node->node->...->node->[tail]
    #    [head], [tail] will always be uncompressed; inner nodes will compress.
    # 2: [head]->[next]->node->node->...->node->[prev]->[tail]
    #    2 here means: don't compress head or head->next or tail->prev or tail,
    #    but compress all nodes between them.
    # 3: [head]->[next]->[next]->node->node->...->node->[prev]->[prev]->[tail]
    # etc.
    list-compress-depth 0
    
    # Sets have a special encoding in just one case: when a set is composed
    # of just strings that happen to be integers in radix 10 in the range
    # of 64 bit signed integers.
    # The following configuration setting sets the limit in the size of the
    # set in order to use this special memory saving encoding.
    set-max-intset-entries 512
    
    # Similarly to hashes and lists, sorted sets are also specially encoded in
    # order to save a lot of space. This encoding is only used when the length and
    # elements of a sorted set are below the following limits:
    zset-max-ziplist-entries 128
    zset-max-ziplist-value 64
    
    # HyperLogLog sparse representation bytes limit. The limit includes the
    # 16 bytes header. When an HyperLogLog using the sparse representation crosses
    # this limit, it is converted into the dense representation.
    #
    # A value greater than 16000 is totally useless, since at that point the
    # dense representation is more memory efficient.
    #
    # The suggested value is ~ 3000 in order to have the benefits of
    # the space efficient encoding without slowing down too much PFADD,
    # which is O(N) with the sparse encoding. The value can be raised to
    # ~ 10000 when CPU is not a concern, but space is, and the data set is
    # composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
    hll-sparse-max-bytes 3000
    
    # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
    # order to help rehashing the main Redis hash table (the one mapping top-level
    # keys to values). The hash table implementation Redis uses (see dict.c)
    # performs a lazy rehashing: the more operation you run into a hash table
    # that is rehashing, the more rehashing "steps" are performed, so if the
    # server is idle the rehashing is never complete and some more memory is used
    # by the hash table.
    #
    # The default is to use this millisecond 10 times every second in order to
    # actively rehash the main dictionaries, freeing memory when possible.
    #
    # If unsure:
    # use "activerehashing no" if you have hard latency requirements and it is
    # not a good thing in your environment that Redis can reply from time to time
    # to queries with 2 milliseconds delay.
    #
    # use "activerehashing yes" if you don't have such hard requirements but
    # want to free memory asap when possible.
    activerehashing yes
    
    # The client output buffer limits can be used to force disconnection of clients
    # that are not reading data from the server fast enough for some reason (a
    # common reason is that a Pub/Sub client can't consume messages as fast as the
    # publisher can produce them).
    #
    # The limit can be set differently for the three different classes of clients:
    #
    # normal -> normal clients including MONITOR clients
    # slave  -> slave clients
    # pubsub -> clients subscribed to at least one pubsub channel or pattern
    #
    # The syntax of every client-output-buffer-limit directive is the following:
    #
    # client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
    #
    # A client is immediately disconnected once the hard limit is reached, or if
    # the soft limit is reached and remains reached for the specified number of
    # seconds (continuously).
    # So for instance if the hard limit is 32 megabytes and the soft limit is
    # 16 megabytes / 10 seconds, the client will get disconnected immediately
    # if the size of the output buffers reach 32 megabytes, but will also get
    # disconnected if the client reaches 16 megabytes and continuously overcomes
    # the limit for 10 seconds.
    #
    # By default normal clients are not limited because they don't receive data
    # without asking (in a push way), but just after a request, so only
    # asynchronous clients may create a scenario where data is requested faster
    # than it can read.
    #
    # Instead there is a default limit for pubsub and slave clients, since
    # subscribers and slaves receive data in a push fashion.
    #
    # Both the hard or the soft limit can be disabled by setting them to zero.
    client-output-buffer-limit normal 0 0 0
    client-output-buffer-limit slave 256mb 64mb 60
    client-output-buffer-limit pubsub 32mb 8mb 60
    
    # Redis calls an internal function to perform many background tasks, like
    # closing connections of clients in timeout, purging expired keys that are
    # never requested, and so forth.
    #
    # Not all tasks are performed with the same frequency, but Redis checks for
    # tasks to perform according to the specified "hz" value.
    #
    # By default "hz" is set to 10. Raising the value will use more CPU when
    # Redis is idle, but at the same time will make Redis more responsive when
    # there are many keys expiring at the same time, and timeouts may be
    # handled with more precision.
    #
    # The range is between 1 and 500, however a value over 100 is usually not
    # a good idea. Most users should use the default of 10 and raise this up to
    # 100 only in environments where very low latency is required.
    hz 10
    
    # When a child rewrites the AOF file, if the following option is enabled
    # the file will be fsync-ed every 32 MB of data generated. This is useful
    # in order to commit the file to the disk more incrementally and avoid
    # big latency spikes.
    aof-rewrite-incremental-fsync yes
    
    # Redis LFU eviction (see maxmemory setting) can be tuned. However it is a good
    # idea to start with the default settings and only change them after investigating
    # how to improve the performances and how the keys LFU change over time, which
    # is possible to inspect via the OBJECT FREQ command.
    #
    # There are two tunable parameters in the Redis LFU implementation: the
    # counter logarithm factor and the counter decay time. It is important to
    # understand what the two parameters mean before changing them.
    #
    # The LFU counter is just 8 bits per key, it's maximum value is 255, so Redis
    # uses a probabilistic increment with logarithmic behavior. Given the value
    # of the old counter, when a key is accessed, the counter is incremented in
    # this way:
    #
    # 1. A random number R between 0 and 1 is extracted.
    # 2. A probability P is calculated as 1/(old_value*lfu_log_factor+1).
    # 3. The counter is incremented only if R < P.
    #
    # The default lfu-log-factor is 10. This is a table of how the frequency
    # counter changes with a different number of accesses with different
    # logarithmic factors:
    #
    # +--------+------------+------------+------------+------------+------------+
    # | factor | 100 hits   | 1000 hits  | 100K hits  | 1M hits    | 10M hits   |
    # +--------+------------+------------+------------+------------+------------+
    # | 0      | 104        | 255        | 255        | 255        | 255        |
    # +--------+------------+------------+------------+------------+------------+
    # | 1      | 18         | 49         | 255        | 255        | 255        |
    # +--------+------------+------------+------------+------------+------------+
    # | 10     | 10         | 18         | 142        | 255        | 255        |
    # +--------+------------+------------+------------+------------+------------+
    # | 100    | 8          | 11         | 49         | 143        | 255        |
    # +--------+------------+------------+------------+------------+------------+
    #
    # NOTE: The above table was obtained by running the following commands:
    #
    #   redis-benchmark -n 1000000 incr foo
    #   redis-cli object freq foo
    #
    # NOTE 2: The counter initial value is 5 in order to give new objects a chance
    # to accumulate hits.
    #
    # The counter decay time is the time, in minutes, that must elapse in order
    # for the key counter to be divided by two (or decremented if it has a value
    # less <= 10).
    #
    # The default value for the lfu-decay-time is 1. A Special value of 0 means to
    # decay the counter every time it happens to be scanned.
    #
    # lfu-log-factor 10
    # lfu-decay-time 1
    
    ########################### ACTIVE DEFRAGMENTATION #######################
    #
    # WARNING THIS FEATURE IS EXPERIMENTAL. However it was stress tested
    # even in production and manually tested by multiple engineers for some
    # time.
    #
    # What is active defragmentation?
    # -------------------------------
    #
    # Active (online) defragmentation allows a Redis server to compact the
    # spaces left between small allocations and deallocations of data in memory,
    # thus allowing to reclaim back memory.
    #
    # Fragmentation is a natural process that happens with every allocator (but
    # less so with Jemalloc, fortunately) and certain workloads. Normally a server
    # restart is needed in order to lower the fragmentation, or at least to flush
    # away all the data and create it again. However thanks to this feature
    # implemented by Oran Agra for Redis 4.0 this process can happen at runtime
    # in an "hot" way, while the server is running.
    #
    # Basically when the fragmentation is over a certain level (see the
    # configuration options below) Redis will start to create new copies of the
    # values in contiguous memory regions by exploiting certain specific Jemalloc
    # features (in order to understand if an allocation is causing fragmentation
    # and to allocate it in a better place), and at the same time, will release the
    # old copies of the data. This process, repeated incrementally for all the keys
    # will cause the fragmentation to drop back to normal values.
    #
    # Important things to understand:
    #
    # 1. This feature is disabled by default, and only works if you compiled Redis
    #    to use the copy of Jemalloc we ship with the source code of Redis.
    #    This is the default with Linux builds.
    #
    # 2. You never need to enable this feature if you don't have fragmentation
    #    issues.
    #
    # 3. Once you experience fragmentation, you can enable this feature when
    #    needed with the command "CONFIG SET activedefrag yes".
    #
    # The configuration parameters are able to fine tune the behavior of the
    # defragmentation process. If you are not sure about what they mean it is
    # a good idea to leave the defaults untouched.
    
    # Enabled active defragmentation
    # activedefrag yes
    
    # Minimum amount of fragmentation waste to start active defrag
    # active-defrag-ignore-bytes 100mb
    
    # Minimum percentage of fragmentation to start active defrag
    # active-defrag-threshold-lower 10
    
    # Maximum percentage of fragmentation at which we use maximum effort
    # active-defrag-threshold-upper 100
    
    # Minimal effort for defrag in CPU percentage
    # active-defrag-cycle-min 25
    
    # Maximal effort for defrag in CPU percentage
    # active-defrag-cycle-max 75
    
    
    

    数据类型

    redis中的数据以键值对的方式存储(key-value),其中key都是字符串。

    redis常用的五大数据类型

    string类型
    string类型是redis中最基本的数据类型,他是key对应的一个单一值
    redis中一个字符串值的最大容量是512M
    应用场景
    String是最常用的一种数据类型,普通的key/value存储都可以归为此类,这里就不所做解释了。

    list类型
    redis中的list是双向链表,可以从两侧插入。
    常见操作:
    遍历:遍历的时候从左往右取值
    删除:弹栈 POP
    添加:压栈 PUSH
    Redis 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素导列表的头部(左边)或者尾部(右
    边)。它的底层实际是个双向链表,对两端的操作性能很高,通过索引下标的操作中间的节点性能会较差。
    应用场景
    Redis list的应用场景非常多,也是Redis最重要的数据结构之一,比如twitter的关注列表、粉丝列表等都可以用Redis的list结构来实现,再比如有的应用使用Redis的list类型实现一个简单的轻量级消息队列,生产者push,消费者pop/bpop。

    set集合
    可以理解为一堆值不重复的列表,类似数学领域中的集合概念,且Redis也提供了针对集合的求交集、并集、差集等操作。

    set 的内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在集合内的原因。

    应用场景
    Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。

    又或者在微博应用中,每个用户关注的人存在一个集合中,就很容易实现求两个人的共同好友功能。
    hash操作
    hash数据类型的键值对中的值是单列的,不支持进一步的层次结构

    Redis Hash对应Value内部实际就是一个HashMap,实际这里会有2种不同实现,这个Hash的成员比较少时Redis为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的HashMap结构,对应的value redisObject的encoding为zipmap,当成员数量增大时会自动转成真正的HashMap,此时encoding为ht。
    应用场景
    假设有多个用户及对应的用户信息,可以用来存储以用户ID为key,将用户信息序列化为比如json格式做为value进行保存。

    zset集合
    zset 是一种特殊的 set(sorted set),在保存 value 的时候,为每个 value 多保存了一个 score 信息。根据 score信息,可以进行排序。
    这个评分(score)被用来按照从最低分到最高分的方式排序集合中的成员。集合的成员是唯一的,但是评分可以是重复了
    应用场景
    Redis sorted set的使用场景与set类似,区别是set不是自动有序的,而sorted set可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。当你需要一个有序的并且不重复的集合列表,那么可以选择sorted set数据结构,比如twitter 的public timeline可以以发表时间作为score来存储,这样获取时就是自动按时间排好序的。

    又比如用户的积分排行榜需求就可以通过有序集合实现。还有上面介绍的使用List实现轻量级的消息队列,其实也可以通过Sorted Set实现有优先级或按权重的队列。

    命令

    redis外部命令

    redis-cli 客户端连接工具
    redis-benchmark 基准测试工具
    redis-check-aof AOF持久化文案及能检测和修复工具
    redis-check-dump RDB持久化文件检测工具和修复工具
    redis-sentinel 启动redis-sentinel 哨兵模式

    redis-cli命令

    redis-cli 参数 释意 举例
    -h 指定地址 redis-cli -h 127.0.0.1
    -p 指定端口 redis-cli -h 127.0.0.1 -p 6379
    -r 指定执行命令的次数 redis-cli -h 127.0.0.1 -p 6379 -r 3 ping
    -i 以时间间隔的方式执行命令 redis-cli -h 127.0.0.1 -p 6379 -r 3 -i 1 ping
    -x 将echo 输出的值 作为value 存放 echo "world"|redis-cli -x set hello
    -a 用于设置了密码时的登录方式 redis-cli -h 127.0.0.1 -p 6379 -a 123456
    command 直接加命令 redis-cli -h 127.0.0.1 -p 6379 -a 123456 ping
    --bigkeys 扫描比较大的key信息 redis-cli -h 127.0.0.1 -p 6379 --bigkeys
    --rdb 文件路径 手动rdb持久化 redis-cli -h 127.0.0.1 -p 6379 --rdb /tmp/dump.rdb
    --stat 实时获取redis的统计信息 redis-cli -h 127.0.0.1 -p 6379 --stat
    --scan 列出所有KEYS 配合--pattern 可以进行匹配 redis-cli --scan --pattern 'k*'
    --slave 手动更新为slave 用于哨兵模式测试 redis-cli --slave
    --latency 测试延时情况 redis-cli -h 127.0.0.1 -p 6379 --latency
    monitor 输出另外一个客户端输入的命令 redis-cli -h 127.0.0.1 -p 6379 monitor
    debug 模拟oom redis-cli debug oom
    模拟宕机 redis-cli debug segfault
    模拟hang redis-cli -p 6379 DEBUG sleep 30

    redis-benchmark基准压测工具

    redis-benchmark 释意 举例
    -h 指定服务器主机名 redis-benchmark -h 127.0.0.1 -p 6379
    -p 指定服务器端口 redis-benchmark -h 127.0.0.1 -p 6379
    -c 指定并发连接数 redis-benchmark -h localhost -p 6379 -c 100 -n 100000
    -n 指定请求数 redis-benchmark -h localhost -p 6379 -c 100 -n 100000
    -d 以字节形式指定SET/GET值的数据大小 redis-benchmark -h 127.0.0.1 -p 6379 -q -d 100
    -r SET/GET/INCR使用随机key,SADD使用随机值 redis-benchmark -c 100 -n 20000 -r 10000
    -q 仅显示query/sec值 redis-benchmark -c 100 -n 20000 -r 10000 -t get,set -q
    --csv 以CSV格式输出 redis-benchmark -c 100 -n 20000 -r 10000 -t get,set -q --csv
    -l 生成循环,永久执行 redis-benchmark -c 100 -n 20000 -r 10000 -t get,set -q --csv -l
    -t 仅运行以逗号隔开的测试命令列表 redis-benchmark -c 100 -n 20000 -r 10000 -t get,set

    redis内部命令

    系统命令 释意
    ping 检测联通性
    config set requirepass password 设置密码
    config get * 获取配置文件参数
    echo 'xxx' 输出
    quit 关闭连接
    auth password 简单密码认证
    client list 返回客户端统计信息
    client kill ip:号码 关闭某个连接
    save 将数据同步保存到磁盘
    bgsave 将数据异步保存磁盘
    lastsave 返回上次成功保存的时间戳
    SHUTDOWN 数据同步到磁盘并关闭服务
    info 提供服务器的信息和统计
    Hash 释意
    hset(key, field, value) 向名称为key的hash中添加元素field
    hget(key, field) 返回名称为key的hash中field对应的value
    hmget(key, (fields)) 返回名称为key的hash中field i对应的value
    hmset(key, (fields)) 向名称为key的hash中添加元素field
    hincrby(key, field, integer) 将名称为key的hash中field的value增加integer
    hexists(key, field) 名称为key的hash中是否存在键为field的域
    hdel(key, field) 删除名称为key的hash中键为field的域
    hlen(key) 返回名称为key的hash中元素个数
    hkeys(key) 返回名称为key的hash中所有键
    hvals(key) 返回名称为key的hash中所有键对应的value
    hgetall(key) 返回名称为key的hash中所有的键(field)及其对应的value
    set 释意
    sadd(key, member) 向名称为key的set中添加元素member
    srem(key, member) 删除名称为key的set中的元素member
    spop(key) 随机返回并删除名称为key的set中一个元素
    smove(srckey, dstkey, member) 移到集合元素
    scard(key) 返回名称为key的set的基数
    sismember(key, member) member是否是名称为key的set的元素
    sinter(key1, key2,…key N) 求交集
    sinterstore(dstkey, (keys)) 求交集并将交集保存到dstkey的集合
    sunion(key1, (keys)) 求并集
    sunionstore(dstkey, (keys)) 求并集并将并集保存到dstkey的集合
    sdiff(key1, (keys)) 求差集
    sdiffstore(dstkey, (keys)) 求差集并将差集保存到dstkey的集合
    smembers(key) 返回名称为key的set的所有元素
    srandmember(key) 随机返回名称为key的set的一个元素
    list 释意
    rpush(key, value) 在名称为key的list尾添加一个值为value的元素
    lpush(key, value) 在名称为key的list头添加一个值为value的 元素
    llen(key) 返回名称为key的list的长度
    lrange(key, start, end) 返回名称为key的list中start至end之间的元素
    ltrim(key, start, end) 截取名称为key的list
    lindex(key, index) 返回名称为key的list中index位置的元素
    lset(key, index, value) 给名称为key的list中index位置的元素赋值
    lrem(key, count, value) 删除count个key的list中值为value的元素
    lpop(key) 返回并删除名称为key的list中的首元素
    rpop(key) 返回并删除名称为key的list中的尾元素
    blpop(key1, key2,… key N, timeout) lpop命令的block版本
    brpop(key1, key2,… key N, timeout): rpop的block版本
    rpoplpush(srckey, dstkey) 返回并删除名称为srckey的list的尾元素,并将该元素添加到名称为dstkey的list的头部
    string 释意
    set(key, value) 给数据库中名称为key的string赋予值value
    get(key) 返回数据库中名称为key的string的value
    getset(key, value) 给名称为key的string赋予上一次的value
    mget(key1, key2,…, key N) 返回库中多个string的value
    setnx(key, value) 添加string,名称为key,值为value
    setex(key, time, value) 向库中添加string,设定过期时间time
    mset(key N, value N) 批量设置多个string的值
    msetnx(key N, value N) 如果所有名称为key i的string都不存在
    incr(key) 名称为key的string增1操作
    incrby(key, integer) 名称为key的string增加integer
    decr(key) 名称为key的string减1操作
    decrby(key, integer) 名称为key的string减少integer
    append(key, value) 名称为key的string的值附加value
    substr(key, start, end) 返回名称为key的string的value的子串
    对库的操作 释意
    select 下标 切换库
    flushdb 清空当前库
    dbsize 查看数据库数据的个数
    flushall 通杀所有库
    key-value操作 释意
    exists(key) 确认一个key是否存在
    del(key) 删除一个key
    type(key) 返回值的类型
    keys(pattern) 返回满足给定pattern的所有key
    randomkey 随机返回key空间的一个
    keyrename(oldname, newname) 重命名key
    dbsize 返回当前数据库中key的数目
    expire 设定一个key的活动时间(s)
    ttl 获得一个key的活动时间
    move(key, dbindex) 移动当前数据库中的key到dbindex数据库
    慢日志 释意
    SLOWLOG GET 10 慢日志查询
    slowlog len 获取慢查询日志条数
    slowlog reset 清空慢查询
    因为你不会,所以你才会---大司马
  • 相关阅读:
    招隐-古琴曲-山中鸣琴,万籁声沉沉,何泠泠!
    因循苟且逸豫而无为,可以侥幸一时,而不可以旷日持久。——王安石
    模糊理论在图像处理中的应用
    铁关-中国首都警官合唱团-歌词
    听着总感觉莫名熟悉的音乐汇总
    石鼓歌-韩愈
    唐长安城
    唐长安的信仰——读书笔记
    Eclipse安装java web插件
    Java调用MySql数据库函数
  • 原文地址:https://www.cnblogs.com/liushiya/p/14597110.html
Copyright © 2011-2022 走看看