zoukankan      html  css  js  c++  java
  • Zookeeper(三) Zookeeper原理与应用

    一、zookeeper原理解析

         1、进群角色描述

        2、Paxos 算法概述( ZAB 协议)    分布式一致性算法

     

         3、Zookeeper 的选主(恢复模式)

     以一个简单的例子来说明整个选举的过程.
    假设有五台服务器组成的 zookeeper 集群,它们的 id 1-5,同时它们都是最新启动的,也就是 没有历史数据,在存放数据量这一点上,都是一样的.假设这些服务器依序启动,来看看会发生 什么

    (1) 服务器 1 启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举 状态一直是 LOOKING 状态
    (2)服务器 2 启动,它与最开始启动的服务器 1 进行通信,互相交换自己的选举结果,由于两者 都没有历史数据,所以 id 值较大的服务器 胜出,但是由于没有达到超过半数以上的服务器都 同意选举它(这个例子中的半数以上是 3),所以服务器 1,2 还是继续保持 LOOKING 状态.
    (3) 服务器 3 启动,根据前面的理论分析,服务器 3 成为服务器 1,2,3 中的老大,而与上面不同的 是,此时有三台服务器选举了它,所以它成为了这次选举的 leader.
    (4) 服务器 4 启动,根据前面的分析,理论上服务器 4 应该是服务器 1,2,3,4 中最大的,但是由于 前面已经有半数以上的服务器选举了服务器 3,所以它只能接收当小弟的命了.
    (5) 服务器 5 启动,4 一样,当小弟.     (如果干掉ID3,怎么重新选举 id最大的那台也就是5id)

    总结: zookeeper server 的三种工作状态
    LOOKING:当前 Server 不知道 leader 是谁,正在搜寻,正在选举
    LEADING:当前 Server 即为选举出来的 leader,负责协调事务
    FOLLOWINGleader 已经选举出来,当前 Server 与之同步,服从 leader 的命令

         4、非全新集群的选举机制(数据恢复)

    那么,初始化的时候,是按照上述的说明进行选举的,但是当 zookeeper 运行了一段时间之 后,有机器 down 掉,重新选举时,选举过程就相对复杂了。
    需要加入数据 versionserver id 和逻辑时钟。
    数据 version:数据新的 version 就大,数据每次更新都会更新 version
    Leader id:就是我们配置的 myid 中的值,每个机器一个。
    逻辑时钟:这个值从 0 开始递增,每次选举对应一个值,也就是说: 如果在同一次选举中,那么 这个值应该是一致的 逻辑时钟值越大,说明这一次选举 leader 的进程更新.

    选举的标准就变成:
        (1)逻辑时钟小的选举结果被忽略,重新投票
        (2)统一逻辑时钟后,数据 id 大的胜出
        (3)数据 id 相同的情况下, leader id 大的胜出
    根据这个规则选出 leader

    二、zookeeper应用案例

         1、服务器上下线动态感知

           需求:某分布式系统中,主节点可以有多台,可以动态上下线。 任意一台客户端都能实时感知 到主节点服务器的上下线 
          设计思路:
         

             (1) 设计服务器端存入服务器上线,下线的信息,比如都写入到 servers 节点下
             (2)设计客户端监听该 servers 节点,获取该服务器集群的在线服务器列表
             (3)服务器一上线,就往 zookeeper 文件系统中的一个统一的节点比如 servers 下写入一个临 时节 点,记录下服务器的信息(思考,该节点最好采用什么类型的节点?)
             (4) 服务器一下线,则删除 servers 节点下的该服务器的信息,则客户端因为监听了该节点的数据变化,所以将第一时间得知服务器的在线状态
          实现:

         服务器端

    package com.ghgj.zookeeper.mydemo;
    import org.apache.zookeeper.CreateMode;
    import org.apache.zookeeper.WatchedEvent;
    import org.apache.zookeeper.Watcher;
    import org.apache.zookeeper.ZooDefs.Ids;
    import org.apache.zookeeper.ZooKeeper;
    import org.apache.zookeeper.data.Stat;
    /**
    * 用来模拟服务器的动态上线下线
    * 总体思路就是服务器上线就上 zookeeper 集群创建一个临时节点,然后监听了该数据节
    点的个数变化的客户端都收到通知
    * 下线,则该临时节点自动删除,监听了该数据节点的个数变化的客户端也都收到通知
    */
    public class DistributeServer {
    private static final String connectStr = "hadoop02:2181,hadoop03:2181,hadoop04:2181";
    private static final int sessionTimeout = 4000;
    private static final String PARENT_NODE = "/server";
    static ZooKeeper zk = null;
    public static void main(String[] args) throws Exception {
    DistributeServer distributeServer = new DistributeServer();
    distributeServer.getZookeeperConnect();
    distributeServer.registeServer("hadoop03");
    Thread.sleep(Long.MAX_VALUE);
    }
    /**
    * 拿到 zookeeper 进群的链接
    */
    public void getZookeeperConnect() throws Exception {
    zk = new ZooKeeper(connectStr, sessionTimeout, new Watcher() {
    @Override
    public void process(WatchedEvent event) {
    }
    });
    }
    /**
    * 服务器上线就注册,掉线就自动删除,所以创建的是临时顺序节点
    */
    public void registeServer(String hostname) throws Exception{
    Stat exists = zk.exists(PARENT_NODE, false);
    if(exists == null){
    zk.create(PARENT_NODE,"server_parent_node".getBytes(),Ids.OPEN_ACL_UNSAFE,
    CreateMode.PERSISTENT);
    }
    zk.create(PARENT_NODE+"/"+hostname, hostname.getBytes(), Ids.OPEN_ACL_UNSAFE,
    CreateMode.EPHEMERAL_SEQUENTIAL);
    System.out.println(hostname+" is online, start working......");
    }
    }
    

      客户端

    package com.ghgj.zookeeper.mydemo;
    import java.util.ArrayList;
    import java.util.List;
    import org.apache.zookeeper.WatchedEvent;
    import org.apache.zookeeper.Watcher;
    import org.apache.zookeeper.ZooKeeper;
    /**
    * 用来模拟用户端的操作:连上 zookeeper 进群,实时获取服务器动态上下线的节点信息
    * 总体思路就是每次该 server 节点下有增加或者减少节点数,我就打印出来该 server 节点
    下的所有节点
    */
    public class DistributeClient {
    private static final String connectStr = "hadoop02:2181,hadoop03:2181,hadoop04:2181";
    private static final int sessionTimeout = 4000;
    private static final String PARENT_NODE = "/server";
    static ZooKeeper zk = null;
    public static void main(String[] args) throws Exception {
    DistributeClient dc = new DistributeClient();
    dc.getZookeeperConnect();
    Thread.sleep(Long.MAX_VALUE);
    }
    /**
    * 拿到 zookeeper 进群的链接
    */
    public void getZookeeperConnect() throws Exception {
    zk = new ZooKeeper(connectStr, sessionTimeout, new Watcher() {
    @Override
    public void process(WatchedEvent event) {
    try {
    // 获取父节点 server 节点下所有子节点,即是所有正上线服务的服
    务器节点
    List<String> children = zk.getChildren(PARENT_NODE, true);
    List<String> servers = new ArrayList<String>();
    for(String child: children){
    // 取出每个节点的数据,放入到 list 里
    String server = new String(zk.getData(PARENT_NODE+"/"+child,
    false, null), "UTF-8");
    servers.add(server);
    }
    // 打印 list 里面的元素
    System.out.println(servers);
    } catch (Exception e) {
    e.printStackTrace();
    }
    }
    });
    System.out.println("Client is online, start Working......");
    }
    }
    

      2、分布式共享锁

           需求:在我们自己的分布式业务系统中,可能会存在某种资源,需要被整个系统的各台服务器共享 访问,但是只允许一台服务器同时访问 

           设计思路:

             (1) 设计多个客户端同时访问同一个数据
             (2)为了同一时间只能允许一个客户端上去访问,所以各个客户端去 zookeeper 集群的一个 znode 节点去注册一个临时节点,定下规则,每次都是编号最小的客户端才能去访问
             (3)多个客户端同时监听该节点,每次当有子节点被删除时,就都收到通知,然后判断自己 的编号是不是最小的,最小的就去执行访问,不是最小的就继续监听。
          代码实现:

    package com.ghgj.zookeeper.mydemo;
    import java.util.Collections;
    import java.util.List;
    import java.util.Random;
    import org.apache.zookeeper.CreateMode;
    import org.apache.zookeeper.WatchedEvent;
    import org.apache.zookeeper.Watcher;
    import org.apache.zookeeper.Watcher.Event.EventType;
    import org.apache.zookeeper.ZooDefs.Ids;
    import org.apache.zookeeper.ZooKeeper;
    import org.apache.zookeeper.data.Stat;
    /**
    * 需求:多个客户端,需要同时访问同一个资源,但同时只允许一个客户端进行访问。
    * 设计思路:多个客户端都去父 znode 下写入一个子 znode,能写入成功的去执行访问,
    写入不成功的等待
    */
    public class MyDistributeLock {
    private static final String connectStr = "hadoop02:2181,hadoop03:2181,hadoop04:2181";
    private static final int sessionTimeout = 4000;
    private static final String PARENT_NODE = "/parent_locks";
    private static final String SUB_NODE = "/sub_client";
    static ZooKeeper zk = null;
    private static String currentPath = "";
    public static void main(String[] args) throws Exception {
    MyDistributeLock mdc = new MyDistributeLock();
    // 1、拿到 zookeeper 链接
    mdc.getZookeeperConnect();
    // 2、查看父节点是否存在,不存在则创建
    Stat exists = zk.exists(PARENT_NODE, false);
    if(exists == null){
    zk.create(PARENT_NODE, PARENT_NODE.getBytes(), Ids.OPEN_ACL_UNSAFE,
    CreateMode.PERSISTENT);
    }
    // 3、监听父节点
    zk.getChildren(PARENT_NODE, true);
    // 4、往父节点下注册节点,注册临时节点,好处就是,当宕机或者断开链接时该
    节点自动删除
    currentPath = zk.create(PARENT_NODE+SUB_NODE, SUB_NODE.getBytes(),
    Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
    // 5、关闭 zk 链接
    Thread.sleep(Long.MAX_VALUE);
    zk.close();
    }
    /**
    * 拿到 zookeeper 集群的链接
    */
    public void getZookeeperConnect() throws Exception {
    zk = new ZooKeeper(connectStr, sessionTimeout, new Watcher() {
    @Override
    public void process(WatchedEvent event) {
    // 匹配看是不是子节点变化,并且监听的路径也要对
    if(event.getType() == EventType.NodeChildrenChanged &&
    event.getPath().equals(PARENT_NODE)){
    try {
    // 获取父节点的所有子节点, 并继续监听
    List<String> childrenNodes = zk.getChildren(PARENT_NODE, true);
    // 匹配当前创建的 znode 是不是最小的 znode
    Collections.sort(childrenNodes);
    if((PARENT_NODE+"/"+childrenNodes.get(0)).equals(currentPath)){
    // 处理业务
    handleBusiness(currentPath);
    }
    } catch (Exception e) {
    e.printStackTrace();
    }
    }
    }
    });
    }
    public void handleBusiness(String create) throws Exception{
    System.out.println(create+" is working......");
    Thread.sleep(new Random().nextInt(4000));
    zk.delete(currentPath, -1);
    System.out.println(create+" is done ......");
    currentPath = zk.create(PARENT_NODE+SUB_NODE, SUB_NODE.getBytes(),
    Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
    }
    }
    

      

     

    补充:监听机制案例

    package com.ghgj.zkapi;
    
    import java.io.IOException;
    import java.util.List;
    
    import org.apache.zookeeper.CreateMode;
    import org.apache.zookeeper.KeeperException;
    import org.apache.zookeeper.WatchedEvent;
    import org.apache.zookeeper.Watcher;
    import org.apache.zookeeper.ZooKeeper;
    import org.apache.zookeeper.Watcher.Event.EventType;
    import org.apache.zookeeper.ZooDefs.Ids;
    
    public class ZKAPIDEMOWatcher {
    
    	// 获取zookeeper连接时所需要的服务器连接信息,格式为主机名:端口号
    	private static final String ConnectString = "hadoop02:2181";
    
    	// 请求了解的会话超时时长
    	private static final int SessionTimeout = 5000;
    
    	private static ZooKeeper zk = null;
    	static Watcher w = null;
    	static Watcher watcher = null;
    
    	public static void main(String[] args) throws Exception {
    
    	watcher = new Watcher() {
    			@Override
    			public void process(WatchedEvent event) {
    				System.out.println(event.getPath() + "	-----" + event.getType());
    				List<String> children;
    				try {
    					if (event.getPath().equals("/spark") && event.getType() == EventType.NodeChildrenChanged) {
    						// zk.setData("/spark", "spark-sql".getBytes(), -1);
    						System.out.println("数据更改成功 ~~~~~~~~~~~~~~~~~~");
    						children = zk.getChildren("/spark", watcher);
    					}
    					if (event.getPath().equals("/spark") && event.getType() == EventType.NodeDataChanged) {
    						// zk.setData("/spark", "spark-sql".getBytes(), -1);
    						System.out.println("数据更改成功 ¥##########");
    						zk.getData("/spark", watcher, null);
    					}
    					if (event.getPath().equals("/mx") && event.getType() == EventType.NodeChildrenChanged) {
    						// zk.setData("/mx", "spark-sql".getBytes(), -1);
    						System.out.println("数据更改成功  ---------");
    						children = zk.getChildren("/mx", watcher);
    					}
    
    				} catch (KeeperException | InterruptedException e) {
    					e.printStackTrace();
    				}
    			}
    		};
    
    		zk = new ZooKeeper(ConnectString, SessionTimeout, watcher);
    
    		zk.getData("/spark", true, null);
    		zk.getChildren("/spark", true);
    		zk.getChildren("/mx", true);
    		zk.exists("/spark", true);
    
    		
    		自定义循环自定义
    		w = new Watcher() {
    			@Override
    			public void process(WatchedEvent event) {
    				try {
    					zk.getData("/hive", w, null);
    					System.out.println("hive shuju bianhua ");
    				} catch (KeeperException e) {
    					e.printStackTrace();
    				} catch (InterruptedException e) {
    					e.printStackTrace();
    				}
    			}
    		};
    
    		zk.getData("/hive", w, null);
    
    		// zk.setData(path, data, version);
    
    		// 表示给znode /ghgj 的数据变化事件加了监听
    		// 第二个参数使用true还是false的意义就是是否使用拿zookeeper链接时指定的监听器
    		// zk.getData("/ghgj", true, null);
    		// zk.setData("/ghgj", "hadoophdfs2".getBytes(), -1);
    
    		/*
    		 * zk.getData("/sqoop", new Watcher(){
    		 * 
    		 * @Override public void process(WatchedEvent event) {
    		 * System.out.println("**************");
    		 * System.out.println(event.getPath()+"	"+event.getType()); } }, null);
    		 */
    		// zk.setData("/sqoop", "hadoophdfs3".getBytes(), -1); //
    		// NodeDataChanged
    		// zk.delete("/sqoop", -1); // NodeDeleted
    		// zk.create("/sqoop/s1", "s1".getBytes(), Ids.OPEN_ACL_UNSAFE,
    		// CreateMode.PERSISTENT);
    
    		// zk.exists("/hivehive", new Watcher(){
    		// @Override
    		// public void process(WatchedEvent event) {
    		// System.out.println("**************");
    		// System.out.println(event.getPath()+"	"+event.getType());
    		// }
    		// });
    
    		// create方法
    		// zk.create("/hivehive", "hivehive".getBytes(), Ids.OPEN_ACL_UNSAFE,
    		// CreateMode.PERSISTENT);
    		// zk.delete("/hivehive", -1);
    		// zk.setData("/hivehive", "hadoop".getBytes(), -1);
    
    		// 需求:有一个父节点叫做/spark,数据是spark,当父节点/spark下有三个子节点,
    		// 那么就把该父节点的数据改成spark-sql
    		// zk.create("/spark", "spark".getBytes(), Ids.OPEN_ACL_UNSAFE,
    		// CreateMode.PERSISTENT);
    
    		/*
    		 * zk.getChildren("/spark", new Watcher() {
    		 * 
    		 * @Override public void process(WatchedEvent event) { try {
    		 * List<String> children = zk.getChildren("/spark", true);
    		 * if(children.size() == 3){
    		 * 
    		 * } zk.setData("/spark", "spark-sql".getBytes(), -1);
    		 * System.out.println("数据更改成功"); } catch (KeeperException |
    		 * InterruptedException e) { e.printStackTrace(); } } });
    		 */
    
    		Thread.sleep(Long.MAX_VALUE);
    
    		zk.close();
    	}
    }
    

      

  • 相关阅读:
    设计模式之开篇(C#语法) 爱拼才会赢
    C#语法糖之第一篇:自动属性&隐式类型 爱拼才会赢
    C#语法糖之第四篇: 扩展方法 爱拼才会赢
    C#中this在扩展方法的应用
    笔记20120215_转义字符_运算符
    Linux基本操作
    SQL创表
    软件测试的概念
    java 线程池
    Redis广播
  • 原文地址:https://www.cnblogs.com/liuwei6/p/6737908.html
Copyright © 2011-2022 走看看