一、Hbase结合mapreduce
为什么需要用 mapreduce 去访问 hbase 的数据?
——加快分析速度和扩展分析能力
Mapreduce 访问 hbase 数据作分析一定是在离线分析的场景下应用
1、HbaseToHDFS
从 hbase 中读取数据,分析之后然后写入 hdfs,代码实现:
package com.ghgj.hbase.hbase2hdfsmr; import java.io.IOException; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.Cell; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.mapreduce.TableMapper; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 作用:从hbase中读取user_info这个表的数据,然后写出到hdfs */ public class HBaseToHDFSMR { private static final String ZK_CONNECT = "hadoop03:2181,hadoop04:2181,hadoop05:2181"; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", ZK_CONNECT); System.setProperty("HADOOP_USER_NAME", "hadoop"); // conf.set("fs.defaultFS", "hdfs://myha01/"); Job job = Job.getInstance(conf); job.setJarByClass(HBaseToHDFSMR.class); Scan scan = new Scan(); scan.addColumn(Bytes.toBytes("base_info"), Bytes.toBytes("name")); /** * TableMapReduceUtil:以util结尾:工具 * MapReduceFactory:以factory结尾,它是工厂类,最大作用就是管理对象的生成 */ TableMapReduceUtil.initTableMapperJob("user_info", scan, HBaseToHDFSMRMapper.class, Text.class, NullWritable.class, job); job.setReducerClass(HBaseToHDFSMRReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); Path outputPath = new Path("/hbase2hdfs/output"); FileSystem fs = FileSystem.get(conf); if(fs.exists(outputPath)){ fs.delete(outputPath); } FileOutputFormat.setOutputPath(job, outputPath); boolean waitForCompletion = job.waitForCompletion(true); System.exit(waitForCompletion ? 0 : 1); } static class HBaseToHDFSMRMapper extends TableMapper<Text, NullWritable>{ /** * key:rowkey * value:map方法每执行一次接收到的一个参数,这个参数就是一个Result实例 * 这个Result里面存的东西就是rowkey, family, qualifier, value, timestamp */ @Override protected void map(ImmutableBytesWritable key, Result value, Mapper<ImmutableBytesWritable, Result, Text, NullWritable>.Context context) throws IOException, InterruptedException { String rowkey = Bytes.toString(key.copyBytes()); System.out.println(rowkey); List<Cell> cells = value.listCells(); for (int i = 0; i < cells.size(); i++) { Cell cell = cells.get(i); String rowkey_result = Bytes.toString(cell.getRow()) + " " + Bytes.toString(cell.getFamily()) + " " + Bytes.toString(cell.getQualifier()) + " " + Bytes.toString(cell.getValue()) + " " + cell.getTimestamp(); context.write(new Text(rowkey_result), NullWritable.get()); } } } static class HBaseToHDFSMRReducer extends Reducer<Text, NullWritable, Text, NullWritable>{ @Override protected void reduce(Text key, Iterable<NullWritable> arg1, Reducer<Text, NullWritable, Text, NullWritable>.Context context) throws IOException, InterruptedException { context.write(key, NullWritable.get()); } } }
2、HDFSToHbase
从 hdfs 从读入数据,处理之后写入 hbase,代码实现:
package com.ghgj.hbase.hbase2hdfsmr; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.HColumnDescriptor; import org.apache.hadoop.hbase.HTableDescriptor; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.HBaseAdmin; import org.apache.hadoop.hbase.client.Mutation; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; public class HDFSToHBaseMR { private static final String ZK_CONNECT = "hadoop03:2181,hadoop04:2181,hadoop05:2181"; private static final String TABLE_NAME = "person_info"; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", ZK_CONNECT); System.setProperty("HADOOP_USER_NAME", "hadoop"); Job job = Job.getInstance(conf); job.setJarByClass(HDFSToHBaseMR.class); // 以下这一段代码是为了创建一张hbase表叫做 person_info HBaseAdmin admin = new HBaseAdmin(conf); HTableDescriptor htd = new HTableDescriptor(TableName.valueOf(TABLE_NAME)); htd.addFamily(new HColumnDescriptor("base_info")); if (admin.tableExists(TABLE_NAME)) { admin.disableTable(TABLE_NAME); admin.deleteTable(TABLE_NAME); } admin.createTable(htd); // 给job指定mapperclass 和 reducerclass job.setMapperClass(HDFSToHBaseMRMapper.class); TableMapReduceUtil.initTableReducerJob(TABLE_NAME, HDFSToHBaseMRReducer.class, job); // 给mapper和reducer指定输出的key-value的类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(NullWritable.class); job.setOutputKeyClass(ImmutableBytesWritable.class); job.setOutputValueClass(Mutation.class); // 指定输入数据的路径 FileInputFormat.setInputPaths(job, new Path("/hbase2hdfs/output")); // job提交 boolean boo = job.waitForCompletion(true); System.exit(boo ? 0 :1); } static class HDFSToHBaseMRMapper extends Mapper<LongWritable, Text, Text, NullWritable> { @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException { context.write(value, NullWritable.get()); } } /** * TableReducer extends Reducer 这么做的唯一效果就是把valueout的类型确定为Mutation */ static class HDFSToHBaseMRReducer extends TableReducer<Text, NullWritable, ImmutableBytesWritable> { /** * baiyc_20150716_0001 base_info name baiyc1 1488348387443 */ @Override protected void reduce(Text key, Iterable<NullWritable> values, Reducer<Text, NullWritable, ImmutableBytesWritable, Mutation>.Context context) throws IOException, InterruptedException { String[] splits = key.toString().split(" "); String rowkeyStr = splits[0]; ImmutableBytesWritable rowkey = new ImmutableBytesWritable(Bytes.toBytes(rowkeyStr)); Put put = new Put(Bytes.toBytes(rowkeyStr)); String family = splits[1]; String qualifier = splits[2]; String value = splits[3]; String ts = splits[4]; put.add(Bytes.toBytes(family), Bytes.toBytes(qualifier), Long.parseLong(ts), Bytes.toBytes(value)); context.write(rowkey, put); } } }
二、Hbase和mysql数据库数据进行互导
1、mysql数据导入到hbase(用sqoop)
命令:
sqoop import --connect jdbc:mysql://hadoop01/mytest --username root --password root
--table student --hbase-create-table --hbase-table studenttest --column-family name
--hbase-row-key id
其 中 会 报 错 , 说 Exception in thread "main" java.lang.NoSuchMethodError: org.apache.hadoop.hbase.HTableDescriptor.addFamily(Lorg/apache/hadoop/hbase/HColumnDescriptor;)V 是由于版本不兼容引起,我们可以通过事先创建好表就可以使用了。
请使用下面的命令:
sqoop import --connect jdbc:mysql://hadoop01/mytest --username root --password root
--table student --hbase-table studenttest1 --column-family name --hbase-row-key id
--hbase-create-table 自动在 hbase 中创建表
--column-family name 指定列簇名字
--hbase-row-key id 指定 rowkey 对应的 mysql 当中的键
2、hbase数据导入到mysql
目前没有直接的命令将 Hbase 中的数据导出到 mysql,但是可以先将 hbase 中的数据导 出到 hdfs 中,再将数据导出 mysql
替代方案:
先将 hbase 的数据导入到 hdfs 或者 hive,然后再将数据导入到 mysql
三、hbase整合hive
原理:
Hive 与 HBase 利用两者本身对外的 API 来实现整合,主要是靠 HBaseStorageHandler 进 行通信,利用 HBaseStorageHandler, Hive 可以获取到 Hive 表对应的 HBase 表名,列簇以及 列, InputFormat 和 OutputFormat 类,创建和删除 HBase 表等。
Hive 访问 HBase 中表数据,实质上是通过 MapReduce 读取 HBase 表数据,其实现是在 MR 中,使用 HiveHBaseTableInputFormat 完成对 HBase 表的切分,获取 RecordReader 对象来读 取数据。
对 HBase 表的切分原则是一个 Region 切分成一个 Split,即表中有多少个 Regions,MR 中就有多 少个 Map。
读取 HBase 表数据都是通过构建 Scanner,对表进行全表扫描,如果有过滤条件,则转化为 Filter。当过滤条件为 rowkey 时,则转化为对 rowkey 的过滤, Scanner 通过 RPC 调用 RegionServer 的 next()来获取数据;
1、准备hbase表 数据
create 'mingxing',{NAME => 'base_info',VERSIONS => 1},{NAME => 'extra_info',VERSIONS => 1}
插入数据:
put 'mingxing','rk001','base_info:name','huangbo'
put 'mingxing','rk001','base_info:age','33'
put 'mingxing','rk001','extra_info:math','44'
put 'mingxing','rk001','extra_info:province','beijing'
put 'mingxing','rk002','base_info:name','xuzheng'
put 'mingxing','rk002','base_info:age','44'
put 'mingxing','rk003','base_info:name','wangbaoqiang'
put 'mingxing','rk003','base_info:age','55'
put 'mingxing','rk003','base_info:gender','male'
put 'mingxing','rk004','extra_info:math','33'
put 'mingxing','rk004','extra_info:province','tianjin'
put 'mingxing','rk004','extra_info:children','3'
put 'mingxing','rk005','base_info:name','liutao'
put 'mingxing','rk006','extra_info:name','liujialing'
2、hive端操作
三、hbasetohbase byMR
package com.ghgj.hbase.hbase2hdfsmr; import java.io.IOException; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.Cell; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.HColumnDescriptor; import org.apache.hadoop.hbase.HTableDescriptor; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.HBaseAdmin; import org.apache.hadoop.hbase.client.Mutation; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.mapreduce.TableMapper; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; public class HBaseToHBaseByMR { private static final String ZK_CONNECT = "hadoop03:2181,hadoop04:2181,hadoop05:2181"; private static final String OLD_TABLE_NAME = "user_info"; private static final String NEW_TABLE_NAME = "person_info2"; private static final String FAMILY = "base_info"; private static final String QUALIFIER = "age"; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", ZK_CONNECT); System.setProperty("HADOOP_USER_NAME", "hadoop"); // conf.set("fs.defaultFS", "hdfs://myha01/"); Job job = Job.getInstance(conf); job.setJarByClass(HBaseToHDFSMR.class); // 以下这一段代码是为了创建一张hbase表叫做 person_info HBaseAdmin admin = new HBaseAdmin(conf); HTableDescriptor htd = new HTableDescriptor(TableName.valueOf(NEW_TABLE_NAME)); htd.addFamily(new HColumnDescriptor(FAMILY)); if (admin.tableExists(NEW_TABLE_NAME)) { admin.disableTable(NEW_TABLE_NAME); admin.deleteTable(NEW_TABLE_NAME); } admin.createTable(htd); Scan scan = new Scan(); scan.addColumn(Bytes.toBytes(FAMILY), Bytes.toBytes(QUALIFIER)); /** * TableMapReduceUtil:以util结尾:工具 * MapReduceFactory:以factory结尾,它是工厂类,最大作用就是管理对象的生成 */ TableMapReduceUtil.initTableMapperJob(OLD_TABLE_NAME, scan, HBaseToHBaseByMRMapper.class, Text.class, NullWritable.class, job); TableMapReduceUtil.initTableReducerJob(NEW_TABLE_NAME, HBaseToHBaseByMRReducer.class, job); // 给mapper和reducer指定输出的key-value的类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(NullWritable.class); job.setOutputKeyClass(ImmutableBytesWritable.class); job.setOutputValueClass(Mutation.class); boolean waitForCompletion = job.waitForCompletion(true); System.exit(waitForCompletion ? 0 : 1); } static class HBaseToHBaseByMRMapper extends TableMapper<Text, NullWritable> { /** * key:rowkey value:map方法每执行一次接收到的一个参数,这个参数就是一个Result实例 * 这个Result里面存的东西就是rowkey, family, qualifier, value, timestamp */ @Override protected void map(ImmutableBytesWritable key, Result value, Mapper<ImmutableBytesWritable, Result, Text, NullWritable>.Context context) throws IOException, InterruptedException { String rowkey = Bytes.toString(key.copyBytes()); System.out.println(rowkey); List<Cell> cells = value.listCells(); for (int i = 0; i < cells.size(); i++) { Cell cell = cells.get(i); String rowkey_result = Bytes.toString(cell.getRow()) + " " + Bytes.toString(cell.getFamily()) + " " + Bytes.toString(cell.getQualifier()) + " " + Bytes.toString(cell.getValue()) + " " + cell.getTimestamp(); context.write(new Text(rowkey_result), NullWritable.get()); } } } /** * TableReducer extends Reducer 这么做的唯一效果就是把valueout的类型确定为Mutation */ static class HBaseToHBaseByMRReducer extends TableReducer<Text, NullWritable, ImmutableBytesWritable> { /** * baiyc_20150716_0001 base_info name baiyc1 1488348387443 */ @Override protected void reduce(Text key, Iterable<NullWritable> values, Reducer<Text, NullWritable, ImmutableBytesWritable, Mutation>.Context context) throws IOException, InterruptedException { String[] splits = key.toString().split(" "); String rowkeyStr = splits[0]; ImmutableBytesWritable rowkey = new ImmutableBytesWritable(Bytes.toBytes(rowkeyStr)); Put put = new Put(Bytes.toBytes(rowkeyStr)); String family = splits[1]; String qualifier = splits[2]; String value = splits[3]; String ts = splits[4]; put.add(Bytes.toBytes(family), Bytes.toBytes(qualifier), Long.parseLong(ts), Bytes.toBytes(value)); context.write(rowkey, put); } } }