zoukankan      html  css  js  c++  java
  • D. Blocks 数学题

    Panda has received an assignment of painting a line of blocks. Since Panda is such an intelligent boy, he starts to think of a math problem of painting. Suppose there are N blocks in a line and each block can be paint red, blue, green or yellow. For some myterious reasons, Panda want both the number of red blocks and green blocks to be even numbers. Under such conditions, Panda wants to know the number of different ways to paint these blocks.

     

    Input

    The first line of the input contains an integer T(1≤T≤100), the number of test cases. Each of the next T lines contains an integerN(1≤N≤10^9) indicating the number of blocks.

     

    Output

    For each test cases, output the number of ways to paint the blocks in a single line. Since the answer may be quite large, you have to module it by 10007.

     

    Sample Input

    2
    1
    2
     

    Sample Output

    2
    6

    https://www.bnuoj.com/bnuoj/contest_show.php?cid=8507#problem/101988

    一开始打表找规律,无果。
    然后分析一下,开始的时候主要怕是2个红,然后绿色的可以4个,6个....这样分类很麻烦。
    于是就转换思路。
    枚举红色 + 绿色一共有多少个
    枚举值就是0、2、4、6.....
    我也会想到这样枚举会超时,但是先写公式出来,看看能不能化简,
    每一次C(n, k)中,就是红色 + 绿色一共有k个,其中再枚举红色的个数,剩下的就会是绿色的个数了。
    C(k, 0) + C(k, 2) + C(k, 4) .... 这个是标准的二项式系数奇次项的和。是2^(k - 1)
    然后枚举红色 + 绿色一共有k个后,剩下的n - k个每个有两种选择,2^(n - k),于是一合并,就是2^(n - 1)
    提取
    2^(n - 1)
    然后公式就出来了。

    2^n + 2^(n - 1) * (2^(n - 1) - 1)
    后面那个减1是因为没有2^0

    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    #define inf (0x3f3f3f3f)
    typedef long long int LL;
    
    #include <iostream>
    #include <sstream>
    #include <vector>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    
    int n;
    LL ans = 0;
    int f[1111];
    const int MOD = 10007;
    void dfs(int cur) {
        if (cur == n + 1) {
            int one = 0, tow = 0;
            for (int i = 1; i <= n; ++i) {
                one += f[i] == 1;
                tow += f[i] == 2;
            }
            if (one % 2 == 0 && tow % 2 == 0) ans++;
    //        ans %= MOD;
            return;
        }
        for (int i = 1; i <= 4; ++i) {
            f[cur] = i;
            dfs(cur + 1);
        }
    }
    int quick_pow(int a, int b) {
        int ans = 1;
        int base = a;
        while (b) {
            if (b & 1) {
                ans *= base;
                if (ans >= MOD) ans %= MOD;
    //            ans %= MOD;
            }
            b >>= 1;
            base *= base;
            if (base >= MOD) base %= MOD;
    //        base %= MOD;
        }
        return ans;
    }
    void work() {
    //    for (n = 1; n <=14; ++n) {
    //        ans = 0;
    //        dfs(1);
    ////        cout << ans % 10007 << endl;
    //        printf("n == %d  %I64d
    ", n, ans);
    //    }
        int n;
        scanf("%d", &n);
        int ans = (quick_pow(2, n) + (quick_pow(2, n - 1) * ((quick_pow(2, n - 1) + MOD - 1) % MOD)) % MOD ) % MOD;
        cout << ans << endl;
    }
    
    int main() {
    #ifdef local
        freopen("data.txt","r",stdin);
    #endif
        int t;
        cin >> t;
        while (t--) work();
        return 0;
    }
    View Code
    
    
    


  • 相关阅读:
    html5与css交互 API 《一》classList
    HTML5标签速查
    html5中常被忘记的标签,属性
    html5不熟悉的标签全称
    基于HTML5的网络拓扑图(1)
    HTML5 Canvas绘制效率如何?
    前端性能优化(Application Cache篇)
    Android独立于Activity或者Fragment的LoadingDialog的实现
    android常用设计模式的理解
    android使用android:ellipsize="end"无效的解决方法
  • 原文地址:https://www.cnblogs.com/liuweimingcprogram/p/5935833.html
Copyright © 2011-2022 走看看