zoukankan      html  css  js  c++  java
  • Atlantis HDU

    Atlantis

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 23452    Accepted Submission(s): 9278

    Problem Description

    There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.

    Input

    The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

    The input file is terminated by a line containing a single 0. Don’t process it.

    Output

    For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

    Output a blank line after each test case.

    Sample Input

    2 10 10 20 20 15 15 25 25.5 0

    Sample Output

    Test case #1

    Total explored area: 180.00

    分析:模板题

    代码:

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 110;
     4 
     5 struct edge
     6 {
     7     double l, r;
     8     double h;
     9     int pos;
    10     bool operator < (const edge &a)const
    11     {
    12         return h < a.h;
    13     }
    14 }e[maxn << 1];
    15 
    16 struct node
    17 {
    18     int l, r;
    19     double sum;
    20     int flag;
    21 }t[maxn << 3];
    22 int n;
    23 double x[maxn << 1];
    24 
    25 void pushup(int tar)
    26 {
    27     if (t[tar].flag) t[tar].sum = x[t[tar].r + 1] - x[t[tar].l];
    28     else if (t[tar].l == t[tar].r) t[tar].sum = 0;
    29     else t[tar].sum = t[tar << 1].sum + t[tar << 1 | 1].sum;
    30 }
    31 
    32 void build(int l, int r, int tar)
    33 {
    34     t[tar].l = l, t[tar].r = r, t[tar].sum = 0, t[tar].flag = 0;
    35     if (l == r) return;
    36     int mid = (l + r) >> 1;
    37     build(l, mid, tar << 1);
    38     build(mid + 1, r, tar << 1 | 1);
    39 }
    40 
    41 void update(int l, int r, int v, int tar)
    42 {
    43     if (l == t[tar].l && r == t[tar].r)
    44     {
    45         t[tar].flag += v;
    46         pushup(tar);
    47         return;
    48     }
    49     int mid = (t[tar].l + t[tar].r) >> 1;
    50     if (r <= mid) update(l, r, v, tar << 1);
    51     else if (l > mid) update(l, r, v, tar << 1 | 1);
    52     else update(l, mid, v, tar << 1), update(mid + 1, r, v, tar << 1 | 1);
    53     pushup(tar);
    54 }
    55 
    56 int main()
    57 {
    58     int num, cnt;
    59     double x1, y1, x2, y2;
    60     int cases = 0;
    61 
    62     while (cin >> n && n)
    63     {
    64         num = cnt = 0;
    65         for (int i = 1; i <= n; i++)
    66         {
    67             scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
    68             e[++num].l = x1, e[num].r = x2, e[num].h = y1, e[num].pos = -1;
    69             e[++num].l = x1, e[num].r = x2, e[num].h = y2, e[num].pos = 1;
    70             x[++cnt] = x1, x[++cnt] = x2;
    71         }
    72         sort(e + 1, e + 1 + num);
    73         sort(x + 1, x + 1 + cnt);
    74         int tot = unique(x + 1, x + 1 + cnt) - (x + 1);
    75         //cout << tot << endl;
    76         build(1, tot, 1);
    77         double ans = 0;
    78         for (int i = 1; i <= num; i++)
    79         {
    80             int l = lower_bound(x + 1, x + 1 + tot, e[i].l) - x;
    81             int r = lower_bound(x + 1, x + 1 + tot, e[i].r) - x - 1;
    82             //cout << l << " " << r << endl;
    83             update(l, r, e[i].pos, 1);
    84             ans += (e[i + 1].h - e[i].h) * t[1].sum;
    85         }
    86         printf("Test case #%d
    Total explored area: %.2f
    
    ", ++cases, ans);
    87     }
    88 }
  • 相关阅读:
    bzoj 2001 CITY 城市建设 cdq分治
    CodeChef
    CodeForces 293E Close Vertices 点分治
    CodeForces 161D Distance in Tree 树上点分治
    POJ-2104 K-th Number CDQ分治
    CodeForces 669 E Little Artem and Time Machine CDQ分治
    BZOJ 1935 园丁的烦恼
    关于dijkstra的优化 及 多源最短路
    nyoj1000_快速幂_费马小定理
    Common Knowledge_快速幂
  • 原文地址:https://www.cnblogs.com/liuwenhan/p/11369048.html
Copyright © 2011-2022 走看看