zoukankan      html  css  js  c++  java
  • The Shortest Path in Nya Graph HDU

    题目:

    This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just solo hay que cambiar un poco el algoritmo. If you do not understand a word of this paragraph, just move on. 
    The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total. 
    You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost. 
    Besides, there are M extra edges, each connecting a pair of node u and v, with cost w. 
    Help us calculate the shortest path from node 1 to node N.

    InputThe first line has a number T (T <= 20) , indicating the number of test cases. 
    For each test case, first line has three numbers N, M (0 <= N, M <= 10 5) and C(1 <= C <= 10 3), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers. 
    The second line has N numbers l i (1 <= l i <= N), which is the layer of i th node belong to. 
    Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 10 4), which means there is an extra edge, connecting a pair of node u and v, with cost w.OutputFor test case X, output "Case #X: " first, then output the minimum cost moving from node 1 to node N. 
    If there are no solutions, output -1.Sample Input

    2
    3 3 3
    1 3 2
    1 2 1
    2 3 1
    1 3 3
    
    3 3 3
    1 3 2
    1 2 2
    2 3 2
    1 3 4

    Sample Output

    Case #1: 2
    Case #2: 3

    分析:
    主要是构图,m条边正常建,对于相邻层的建图:对于每一层,层点 → 该层每个点,该层每个点→邻层层点(均为单项)
    代码:
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long ll;
     4 const int maxn = 9e5 + 10;
     5 const ll inf = 1e18;
     6 struct edge
     7 {
     8     int e, v, next;
     9     edge(int a = 0, int b = 0, int c = 0) : e(a), v(b), next(c) {}
    10 }e[maxn];
    11 int head[maxn];
    12 ll dis[maxn];
    13 int vis[maxn];
    14 int v[maxn];
    15 int have[maxn];
    16 int tot;
    17 
    18 struct node
    19 {
    20     int e;
    21     ll dis;
    22     node(int a = 0, ll b = 0) : e(a), dis(b) {}
    23     bool operator< (const node& a) const
    24     {
    25         return a.dis < dis;
    26     }
    27 };
    28 
    29 void add(int x, int y, int v, int tot)
    30 {
    31     e[tot] = edge(y, v, head[x]);
    32     head[x] =tot;
    33 }
    34 
    35 void dj()
    36 {
    37     for (int i = 1; i < maxn; i++)
    38         dis[i] = inf;
    39     dis[1] = 0;
    40     memset(vis, 0, sizeof(vis));
    41     priority_queue<node> q;
    42     q.push(node(1, 0));
    43 
    44 
    45     while (!q.empty())
    46     {
    47         node temp = q.top(); q.pop();
    48         int u = temp.e;
    49         if (vis[u]) continue;
    50         vis[u] = 1;
    51         for (int i = head[u]; i != -1; i = e[i].next)
    52         {
    53             int y = e[i].e;
    54             if (!vis[y] && dis[y] > dis[u] + e[i].v)
    55             {
    56                 dis[y] = dis[u] + e[i].v;
    57                 q.push(node(y, dis[y]));
    58             }
    59         }
    60     }
    61 }
    62 
    63 int main()
    64 {
    65     int T; cin >> T;
    66     int n, m, c;
    67     int cases = 0;
    68 
    69     while (T--)
    70     {
    71         int x, y, w;
    72 
    73         cin >> n >> m >> c;
    74         tot = 0;
    75         memset(head, -1, sizeof(head));
    76         memset(have, 0, sizeof(have));
    77         for (int i = 1; i <= n; i++)//input
    78         {
    79             scanf("%d", &v[i]);
    80             have[v[i]] = 1;
    81         }
    82         for (int i = 1; i <= n; i++)
    83         {
    84             add(v[i] + n, i, 0, ++tot);
    85             if (v[i] > 1 && have[v[i] - 1]) add(i, v[i] - 1 + n, c, ++tot);
    86             if (v[i] < n && have[v[i] + 1]) add(i, v[i] + 1 + n, c, ++tot);
    87         }
    88         for (int i = 1; i <= m; i++)//point to point
    89         {
    90             scanf("%d%d%d", &x, &y, &w);
    91             add(x, y, w, ++tot);
    92             add(y, x, w, ++tot);
    93         }
    94         dj();
    95         printf("Case #%d: %lld
    ", ++cases, dis[n] == inf ? -1 : dis[n]);
    96     }
    97 }
     
  • 相关阅读:
    CodeForces 670E Correct Bracket Sequence Editor
    CodeForces 670F Restore a Number
    HDU 5895 Mathematician QSC
    HDU 5880 Family View
    HDU 5886 Tower Defence
    CSS3.16
    CSS页面定制代码+动漫人物设计
    TSP变形(三进制状压)
    三进制状压(涂抹果酱)
    最小点覆盖(König定理)
  • 原文地址:https://www.cnblogs.com/liuwenhan/p/11432058.html
Copyright © 2011-2022 走看看