zoukankan      html  css  js  c++  java
  • 0 or 1 HDU

    Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij(1<=i,j<=n),which is 0 or 1. 

    Besides,X ij meets the following conditions: 

    1.X 12+X 13+...X 1n=1 
    2.X 1n+X 2n+...X n-1n=1 
    3.for each i (1<i<n), satisfies ∑X ki (1<=k<=n)=∑X ij (1<=j<=n). 

    For example, if n=4,we can get the following equality: 

    12+X 13+X 14=1 
    14+X 24+X 34=1 
    12+X 22+X 32+X 42=X 21+X 22+X 23+X 24 
    13+X 23+X 33+X 43=X 31+X 32+X 33+X 34 

    Now ,we want to know the minimum of ∑C ij*X ij(1<=i,j<=n) you can get. 
    Hint

    For sample, X 12=X 24=1,all other X ij is 0. 

    InputThe input consists of multiple test cases (less than 35 case). 
    For each test case ,the first line contains one integer n (1<n<=300). 
    The next n lines, for each lines, each of which contains n integers, illustrating the matrix C, The j-th integer on i-th line is C ij(0<=C ij<=100000).OutputFor each case, output the minimum of ∑C ij*X ij you can get. 
    Sample Input

    4
    1 2 4 10
    2 0 1 1
    2 2 0 5
    6 3 1 2

    Sample Output

    3

    分析:学到了如何求从一个点到这个点途径至少一个点的最短环。

    将条件转化为图论最短路径问题,Xij 转化为边 i→j 的权值,那么对应关系为:

    • 表示点 1 的出度为 1
    • 表示点 n 的入度为 1
    • 除了点 1 和点 n 外的其他点出入度相等

    求解的问题转化为点 1 到点 n 的一条最短路径。

    其实还有一种情况,那就是可以从点 1 出发到达其他点然后又回到点 1 形成一个环,同样也可以从点 n 出发回到点 n。这样也是符合条件的,答案为从 1 出发的最小权值环和从 n 出发的最小权值环之和。

    答案为两种情况的最小值

    代码:

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int inf = 0x3f3f3f3f;
     4 int n;
     5 int g[400][400];
     6 int dis[400], inq[400];
     7 
     8 void spfa(int x)
     9 {
    10     queue<int> q;
    11     memset(inq, 0, sizeof(inq));
    12     for (int i = 1; i <= n; i++)
    13     {
    14         if (i == x)
    15             dis[i] = inf;
    16         else
    17         {
    18             dis[i] = g[x][i];
    19             q.push(i);
    20             inq[i] = true;
    21         }
    22     }
    23     while (!q.empty())
    24     {
    25         int u = q.front(); q.pop();
    26         inq[u] = false;
    27         for (int i = 1; i <= n; i++)
    28             if (dis[i] > dis[u] + g[u][i])
    29             {
    30                 dis[i] = dis[u] + g[u][i];
    31                 if (!inq[i])
    32                     q.push(i), inq[i];
    33             }
    34     }
    35 }
    36 
    37 
    38 int main()
    39 {
    40     while (cin >> n)
    41     {
    42         for (int i = 1; i <= n; i++)
    43             for (int j = 1; j <= n; j++)
    44                 scanf("%d", &g[i][j]);
    45         spfa(1);
    46         int ans = dis[n];
    47         int c1 = dis[1];
    48         spfa(n);
    49         int c2 = dis[n];
    50         cout << min(ans, c1 + c2) << endl;
    51     }
    52 }
  • 相关阅读:
    Caffe学习系列(9):solver优化方法
    Caffe学习系列(8):solver,train_val.prototxt,deploy.prototxt及其配置
    模式识别与图像处理笔试题
    图像增强与图像复原
    hough变换检测线和圆
    C++关键字:mutable(转)
    JS 时间格式化函数
    为当前的div 动态添加一个样式
    曾经感动过我们的文字 今天是否还有印象?——v1
    关于模态框 大小的设置 最大 中等 小小
  • 原文地址:https://www.cnblogs.com/liuwenhan/p/11437033.html
Copyright © 2011-2022 走看看