zoukankan      html  css  js  c++  java
  • 6.正则化

    1 import numpy as np
    2 from keras.datasets import mnist
    3 from keras.utils import np_utils
    4 from keras.models import Sequential
    5 from keras.layers import Dense
    6 from keras.optimizers import SGD
    7 from keras.regularizers import l2
    # 载入数据
    (x_train,y_train),(x_test,y_test) = mnist.load_data()
    # (60000,28,28)
    print('x_shape:',x_train.shape)
    # (60000)
    print('y_shape:',y_train.shape)
    # (60000,28,28)->(60000,784)
    x_train = x_train.reshape(x_train.shape[0],-1)/255.0
    x_test = x_test.reshape(x_test.shape[0],-1)/255.0
    # 换one hot格式
    y_train = np_utils.to_categorical(y_train,num_classes=10)
    y_test = np_utils.to_categorical(y_test,num_classes=10)
    
    # 创建模型
    model = Sequential([
            Dense(units=200,input_dim=784,bias_initializer='one',activation='tanh',kernel_regularizer=l2(0.0003)),
            Dense(units=100,bias_initializer='one',activation='tanh',kernel_regularizer=l2(0.0003)),
            Dense(units=10,bias_initializer='one',activation='softmax',kernel_regularizer=l2(0.0003))
        ])
    
    # 定义优化器
    sgd = SGD(lr=0.2)
    
    # 定义优化器,loss function,训练过程中计算准确率
    model.compile(
        optimizer = sgd,
        loss = 'categorical_crossentropy',
        metrics=['accuracy'],
    )
    
    # 训练模型
    model.fit(x_train,y_train,batch_size=32,epochs=10)
    
    # 评估模型
    loss,accuracy = model.evaluate(x_test,y_test)
    print('
    test loss',loss)
    print('test accuracy',accuracy)
    
    loss,accuracy = model.evaluate(x_train,y_train)
    print('train loss',loss)
    print('train accuracy',accuracy)
  • 相关阅读:
    django:开发一个下载图片的接口
    django:cbv模式和fbv模式的区别
    java生成二维码/java解析二维码
    java如何台生成二维码详解
    html5 WebSocket的Js实例教程
    vue 组件传参
    Vue路由注意事项
    Vue全家桶
    浅谈vue对seo的影响
    vue打包详情
  • 原文地址:https://www.cnblogs.com/liuwenhua/p/11566984.html
Copyright © 2011-2022 走看看