zoukankan      html  css  js  c++  java
  • 10.模型保存

    import numpy as np
    from keras.datasets import mnist
    from keras.utils import np_utils
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.optimizers import SGD
     1 # 载入数据
     2 (x_train,y_train),(x_test,y_test) = mnist.load_data()
     3 # (60000,28,28)
     4 print('x_shape:',x_train.shape)
     5 # (60000)
     6 print('y_shape:',y_train.shape)
     7 # (60000,28,28)->(60000,784)
     8 x_train = x_train.reshape(x_train.shape[0],-1)/255.0
     9 x_test = x_test.reshape(x_test.shape[0],-1)/255.0
    10 # 换one hot格式
    11 y_train = np_utils.to_categorical(y_train,num_classes=10)
    12 y_test = np_utils.to_categorical(y_test,num_classes=10)
    13 
    14 # 创建模型,输入784个神经元,输出10个神经元
    15 model = Sequential([
    16         Dense(units=10,input_dim=784,bias_initializer='one',activation='softmax')
    17     ])
    18 
    19 # 定义优化器
    20 sgd = SGD(lr=0.2)
    21 
    22 # 定义优化器,loss function,训练过程中计算准确率
    23 model.compile(
    24     optimizer = sgd,
    25     loss = 'mse',
    26     metrics=['accuracy'],
    27 )
    28 
    29 # 训练模型
    30 model.fit(x_train,y_train,batch_size=64,epochs=5)
    31 
    32 # 评估模型
    33 loss,accuracy = model.evaluate(x_test,y_test)
    34 
    35 print('
    test loss',loss)
    36 print('accuracy',accuracy)
    37 
    38 # 保存模型
    39 model.save('model.h5')   # HDF5文件,pip install h5py

  • 相关阅读:
    复习事件委托
    模式学习⑧--观察者模式
    模式学习⑦ --中介者模式
    模式学习(六)--- 策略模式
    模式学习(五)--装饰者模式
    模式学习(四)-迭代器
    模式学习(三)- 工厂模式
    模式学习(二)
    linux rpm包解压
    linux patch中的p0和p1的区别
  • 原文地址:https://www.cnblogs.com/liuwenhua/p/11567019.html
Copyright © 2011-2022 走看看