zoukankan      html  css  js  c++  java
  • 使用VGG16完成猫狗分类

    from keras.applications.vgg16 import VGG16
    from keras.models import Sequential
    from keras.layers import Conv2D,MaxPool2D,Activation,Dropout,Flatten,Dense
    from keras.optimizers import SGD
    from keras.preprocessing.image import ImageDataGenerator,img_to_array,load_img
    import numpy as np
    1 vgg16_model = VGG16(weights='imagenet',include_top=False, input_shape=(150,150,3))
     1 # 搭建全连接层
     2 top_model = Sequential()
     3 top_model.add(Flatten(input_shape=vgg16_model.output_shape[1:]))
     4 top_model.add(Dense(256,activation='relu'))
     5 top_model.add(Dropout(0.5))
     6 top_model.add(Dense(2,activation='softmax'))
     7 
     8 model = Sequential()
     9 model.add(vgg16_model)
    10 model.add(top_model)
    train_datagen = ImageDataGenerator(
        rotation_range = 40,     # 随机旋转度数
        width_shift_range = 0.2, # 随机水平平移
        height_shift_range = 0.2,# 随机竖直平移
        rescale = 1/255,         # 数据归一化
        shear_range = 20,       # 随机错切变换
        zoom_range = 0.2,        # 随机放大
        horizontal_flip = True,  # 水平翻转
        fill_mode = 'nearest',   # 填充方式
    ) 
    test_datagen = ImageDataGenerator(
        rescale = 1/255,         # 数据归一化
    ) 
    batch_size = 32
    
    # 生成训练数据
    train_generator = train_datagen.flow_from_directory(
        'image/train',
        target_size=(150,150),
        batch_size=batch_size,
        )
    
    # 测试数据
    test_generator = test_datagen.flow_from_directory(
        'image/test',
        target_size=(150,150),
        batch_size=batch_size,
        )
    train_generator.class_indices
    {'cat': 0, 'dog': 1}
    1 # 定义优化器,代价函数,训练过程中计算准确率
    2 model.compile(optimizer=SGD(lr=1e-4,momentum=0.9),loss='categorical_crossentropy',metrics=['accuracy'])
    3 
    4 model.fit_generator(train_generator,steps_per_epoch=len(train_generator),epochs=20,validation_data=test_generator,validation_steps=len(test_generator))

    # pip install h5py
    model.save('model_vgg16.h5')

    测试

    from keras.models import load_model
    import numpy as np
    
    label = np.array(['cat','dog'])
    # 载入模型
    model = load_model('model_vgg16.h5')
    
    # 导入图片
    image = load_img('image/test/cat/cat.1003.jpg')
    image

    image = image.resize((150,150))
    image = img_to_array(image)
    image = image/255
    image = np.expand_dims(image,0)
    image.shape
    (1, 150, 150, 3)
    print(label[model.predict_classes(image)]
    ['cat']
     
  • 相关阅读:
    字符串旋转词、句子逆序化、字符串移位、最小字典序字符串问题
    字符串匹配算法——BF、KMP、Sunday
    字符串问题简述与两个基本问题的Java实现——判断二叉树拓扑结构关系与变形词
    PowerDesigner使用笔记
    SpringMVC学习笔记八:文件上传下载(转)
    小程序实现原理解析
    Flink流处理之迭代案例
    关于“淘宝爆款”的数据抓取与数据分析
    基于内容的推荐 java实现
    qt坐标系统与布局的简单入门
  • 原文地址:https://www.cnblogs.com/liuwenhua/p/11569615.html
Copyright © 2011-2022 走看看