zoukankan      html  css  js  c++  java
  • 7.交叉熵

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    # 载入数据集
    mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
    
    # 批次大小
    batch_size = 64
    # 计算一个周期一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    # 定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    # 创建一个简单的神经网络:784-10
    W = tf.Variable(tf.truncated_normal([784,10], stddev=0.1))
    b = tf.Variable(tf.zeros([10]) + 0.1)
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    # 二次代价函数
    # loss = tf.losses.mean_squared_error(y, prediction)
    # 交叉熵
    loss = tf.losses.softmax_cross_entropy(y, prediction)
    
    # 使用梯度下降法
    train = tf.train.GradientDescentOptimizer(0.3).minimize(loss)
    
    # 结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
    # 求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    with tf.Session() as sess:
        # 变量初始化
        sess.run(tf.global_variables_initializer())
        # 周期epoch:所有数据训练一次,就是一个周期
        for epoch in range(21):
            for batch in range(n_batch):
                # 获取一个批次的数据和标签
                batch_xs,batch_ys = mnist.train.next_batch(batch_size)
                sess.run(train,feed_dict={x:batch_xs,y:batch_ys})
            # 每训练一个周期做一次测试
            acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
            print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
    Extracting MNIST_data	rain-images-idx3-ubyte.gz
    Extracting MNIST_data	rain-labels-idx1-ubyte.gz
    Extracting MNIST_data	10k-images-idx3-ubyte.gz
    Extracting MNIST_data	10k-labels-idx1-ubyte.gz
    Iter 0,Testing Accuracy 0.7473
    Iter 1,Testing Accuracy 0.8413
    Iter 2,Testing Accuracy 0.9066
    Iter 3,Testing Accuracy 0.9113
    Iter 4,Testing Accuracy 0.9143
    Iter 5,Testing Accuracy 0.9168
    Iter 6,Testing Accuracy 0.9199
    Iter 7,Testing Accuracy 0.9201
    Iter 8,Testing Accuracy 0.9202
    Iter 9,Testing Accuracy 0.9213
    Iter 10,Testing Accuracy 0.921
    Iter 11,Testing Accuracy 0.9205
    Iter 12,Testing Accuracy 0.9214
    Iter 13,Testing Accuracy 0.923
    Iter 14,Testing Accuracy 0.9237
    Iter 15,Testing Accuracy 0.9238
    Iter 16,Testing Accuracy 0.924
    Iter 17,Testing Accuracy 0.9231
    Iter 18,Testing Accuracy 0.9246
    Iter 19,Testing Accuracy 0.925
    Iter 20,Testing Accuracy 0.9253
  • 相关阅读:
    拷贝构造函数的参数类型必须是引用
    [设计模式] 23 访问者模式 visitor Pattern
    [设计模式] 20 状态模式 State Pattern
    [设计模式] 19 观察者模式 Observer Pattern
    [设计模式] 18 备忘录模式Memento Pattern
    [设计模式] 17 中介者模式 Mediator Pattern
    [设计模式] 16 迭代器模式 Iterator Pattern
    [设计模式] 15 解释器模式 Interpreter
    [设计模式] 21 策略模式 Strategy
    图灵測试,測的究竟是什么?
  • 原文地址:https://www.cnblogs.com/liuwenhua/p/11605466.html
Copyright © 2011-2022 走看看