zoukankan      html  css  js  c++  java
  • DeeplabV3+训练自己的数据集(二)

    数据集处理

    一、数据标注

      使用labelme,如下:

      

      数据图片和标注json文件放到同一个目录下

    二、图像标注后的数据转换

    (1)训练数据集生成标签图

     
    python labelme2voc.py F:lackborddeeplabv3image --labels labels.txt
    其中,labels.txt中是需要分割的物体的类别。本项目包括:
    __ignore__
    _background_
    blackboard
    screen

    (2)代码如下

    #!/usr/bin/env python
    
    from __future__ import print_function
    
    import argparse
    import glob
    import json
    import os
    import os.path as osp
    import sys
    
    import numpy as np
    import PIL.Image
    
    import labelme
    
    
    def main():
        parser = argparse.ArgumentParser(
            formatter_class=argparse.ArgumentDefaultsHelpFormatter
        )
        parser.add_argument('--input_dir', default= r"F:lackborddeeplabv3image",help='input annotated directory')
        parser.add_argument('--output_dir', default= r"F:lackborddeeplabv3masks",help='output dataset directory')
        parser.add_argument('--labels', default = r"F:lackborddeeplabv3class_label.txt",help='labels file', )
        args = parser.parse_args()
    
        if osp.exists(args.output_dir):
            print('Output directory already exists:', args.output_dir)
            sys.exit(1)
        os.makedirs(args.output_dir)
        os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
        os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
        os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
        os.makedirs(osp.join(args.output_dir, 'SegmentationClassVisualization'))
        print('Creating dataset:', args.output_dir)
    
        class_names = []
        class_name_to_id = {}
        for i, line in enumerate(open(args.labels).readlines()):
            class_id = i - 1  # starts with -1
            class_name = line.strip()
            class_name_to_id[class_name] = class_id
            if class_id == -1:
                assert class_name == '__ignore__'
                continue
            elif class_id == 0:
                assert class_name == '_background_'
            class_names.append(class_name)
        class_names = tuple(class_names)
        print('class_names:', class_names)
        out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
        with open(out_class_names_file, 'w') as f:
            f.writelines('
    '.join(class_names))
        print('Saved class_names:', out_class_names_file)
    
        colormap = labelme.utils.label_colormap(255)
    
        for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
            print('Generating dataset from:', label_file)
            with open(label_file,"r",encoding="utf-8") as f:
                base = osp.splitext(osp.basename(label_file))[0]
                out_img_file = osp.join(
                    args.output_dir, 'JPEGImages', base + '.jpg')
                out_lbl_file = osp.join(
                    args.output_dir, 'SegmentationClass', base + '.npy')
                out_png_file = osp.join(
                    args.output_dir, 'SegmentationClassPNG', base + '.png')
                out_viz_file = osp.join(
                    args.output_dir,
                    'SegmentationClassVisualization',
                    base + '.jpg',
                )
    
                data = json.load(f)
    
                label_file = label_file.rstrip(".json")
                print(label_file)
                # img_file = osp.join(osp.dirname(label_file), data['imagePath'])
                img_file =label_file +".jpg"
                print(img_file)
                img = np.asarray(PIL.Image.open(img_file))
                PIL.Image.fromarray(img).save(out_img_file)
    
                lbl = labelme.utils.shapes_to_label(
                    img_shape=img.shape,
                    shapes=data['shapes'],
                    label_name_to_value=class_name_to_id,
                )
                labelme.utils.lblsave(out_png_file, lbl)
    
                np.save(out_lbl_file, lbl)
    
                viz = labelme.utils.draw_label(
                    lbl, img, class_names, colormap=colormap)
                PIL.Image.fromarray(viz).save(out_viz_file)
    
    
    if __name__ == '__main__':
        main()
    执行后生成: 

     

    (3) mask灰度值的转换: 

    去除mask的colormap ,则可以使用自带的 remove_gt_colormap.py 脚本进行转换
    python datasets/remove_gt_colormap.py --original_gt_folder /lwh/models/research/deeplab/datasets/blackboard/png --output_dir /lwh/models/research/deeplab/datasets/blackboard/mask

    (4)制作指引文件,为生成tfrecord数据格式做准备

    import os,shutil
    from PIL import Image
     
    
    
    train_path = r'F:lackborddeeplabv3masks	rain'
    filelist_train = sorted(os.listdir(train_path))
    val_path = r'F:lackborddeeplabv3masksval'
    filelist_val = sorted(os.listdir(val_path))
    index_path = r'F:lackborddeeplabv3masksindex'
    
    VOC_file_dir = index_path
    
    
    VOC_train_file = open(os.path.join(VOC_file_dir, "train.txt"), 'w')
    VOC_test_file = open(os.path.join(VOC_file_dir, "val.txt"), 'w')
    VOC_train_file.close()
    VOC_test_file.close()
    
    VOC_train_file = open(os.path.join(VOC_file_dir, "train.txt"), 'a')
    VOC_test_file = open(os.path.join(VOC_file_dir, "val.txt"), 'a')
    
    for eachfile in filelist_train:
        (temp_name,temp_extention) = os.path.splitext(eachfile)
        img_name = temp_name
        VOC_train_file.write(img_name + '
    ')
    
    for eachfile in filelist_val:
        (temp_name, temp_extention) = os.path.splitext(eachfile)
        img_name = temp_name
        VOC_test_file.write(img_name + '
    ')
    
    VOC_train_file.close()
    VOC_test_file.close()

    (4)制作tfrecord文件

    需要四个文件路径

     image存放原始的训练图片,index存放指引文件,mask存放去除水雾的label图片,tfrecord为保存训练数据,运行下面脚本命令,生成训练数据

    python build_voc2012_data.py --image_folder="/lwh/models/research/deeplab/datasets/CamVid/image" 
    --semantic_segmentation_folder="/lwh/models/research/deeplab/datasets/CamVid/mask"
    --list_folder="/lwh/models/research/deeplab/datasets/CamVid/index" --image_format="png" --label_format="png"
    --output_dir="/lwh/models/research/deeplab/datasets/CamVid/tfrecord"
    image_folder :数据集中原输入数据的文件目录地址
    semantic_segmentation_folder:数据集中标签的文件目录地址
    list_folder : 将数据集分类成训练集、验证集等的指示目录文件目录
    image_format : 输入图片数据的格式
    output_dir:制作的TFRecord存放的目录地址(自己创建)
     
  • 相关阅读:
    事务数据oracle 锁1
    编译文件系统移植linux3.0.62 + busybox最小系统到单板TQ2440
    事务说明[tomcat] spring2.5.6 + hiberante3.1.3 + atomikos3.8.0 多数据源事务配置
    字符判断字母顺序问题
    维度字段缓慢渐变维度的处理方式
    nullnull提取汉字第一个字母
    期望连续2013百度之星4.27月赛 题目一 Fir
    覆盖距离AsiaHatyai2012 & LA 6144 Radiation 二分搜索
    冒泡,插入,希尔,快排的比较
    链表打印从尾到头打印链表
  • 原文地址:https://www.cnblogs.com/liuwenhua/p/15136361.html
Copyright © 2011-2022 走看看