zoukankan      html  css  js  c++  java
  • JAVA设计模式简介及八种常见设计模式详解

    一、什么是设计模式                                                                                                                                       

      设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。 毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件工程的基石,如同大厦的一块块砖石一样。项目中合理的运用设计模式可以完美的解决很多问题,每种模式在现在中都有相应的原理来与之对应,每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决方案,这也是它能被广泛应用的原因。简单说:

      模式:在某些场景下,针对某类问题的某种通用的解决方案。

      场景:项目所在的环境

      问题:约束条件,项目目标等

      解决方案:通用、可复用的设计,解决约束达到目标。

    二、设计模式的六大原则

      因为设计模式就是基于这些原则的实现,所以很有必要了解这些原则,下面主要对面向对象编程的几个原则进行简单介绍。

      1、开闭原则(Open Close Principle)

      开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。

      2、里氏代换原则(Liskov Substitution Principle)

      里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。

      3、依赖倒转原则(Dependence Inversion Principle)

      这个是开闭原则的基础,具体内容:真对接口编程,依赖于抽象而不依赖于具体。

      4、接口隔离原则(Interface Segregation Principle)

      这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。

      5、迪米特法则(最少知道原则)(Demeter Principle)

      为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。

      6、合成复用原则(Composite Reuse Principle)

      原则是尽量使用合成/聚合的方式,而不是使用继承。

    三、设计模式的三个分类                                                                                                                                

      创建型模式:对象实例化的模式,创建型模式用于解耦对象的实例化过程。

      结构型模式:把类或对象结合在一起形成一个更大的结构。

      行为型模式:类和对象如何交互,及划分责任和算法。

      如下图所示:

     

    四、各分类中模式的关键点      

      创建型模式                                                                                                            

      单例模式:某个类只能有一个实例,提供一个全局的访问点。

      简单工厂:一个工厂类根据传入的参量决定创建出那一种产品类的实例。

      工厂方法:定义一个创建对象的接口,让子类决定实例化那个类。

      抽象工厂:创建相关或依赖对象的家族,而无需明确指定具体类。

      建造者模式:封装一个复杂对象的构建过程,并可以按步骤构造。

      原型模式:通过复制现有的实例来创建新的实例。

      结构性模式

      适配器模式:将一个类的方法接口转换成客户希望的另外一个接口。

      组合模式:将对象组合成树形结构以表示“”部分-整体“”的层次结构。

      装饰模式:动态的给对象添加新的功能。

      代理模式:为其他对象提供一个代理以便控制这个对象的访问。

      亨元(蝇量)模式:通过共享技术来有效的支持大量细粒度的对象。

      外观模式:对外提供一个统一的方法,来访问子系统中的一群接口。

      桥接模式:将抽象部分和它的实现部分分离,使它们都可以独立的变化。

       行为型模式

      模板模式:定义一个算法结构,而将一些步骤延迟到子类实现。

      解释器模式:给定一个语言,定义它的文法的一种表示,并定义一个解释器。

      策略模式:定义一系列算法,把他们封装起来,并且使它们可以相互替换。

      状态模式:允许一个对象在其对象内部状态改变时改变它的行为。

      观察者模式:对象间的一对多的依赖关系。

      备忘录模式:在不破坏封装的前提下,保持对象的内部状态。

      中介者模式:用一个中介对象来封装一系列的对象交互。

      命令模式:将命令请求封装为一个对象,使得可以用不同的请求来进行参数化。

      访问者模式:在不改变数据结构的前提下,增加作用于一组对象元素的新功能。

      责任链模式:将请求的发送者和接收者解耦,使的多个对象都有处理这个请求的机会。

      迭代器模式:一种遍历访问聚合对象中各个元素的方法,不暴露该对象的内部结构。

    五、八种常见设计模式详解 

      1、单例模式

      所谓的单例设计指的是一个类只允许产生一个实例化对象。 
      最好理解的一种设计模式,分为懒汉式饿汉式

      1.1、饿汉式

      ——构造方法私有化,外部无法产生新的实例化对象,只能通过static方法取得实例化对象

    class Singleton {
        /**
         * 在类的内部可以访问私有结构,所以可以在类的内部产生实例化对象
         */
        private static Singleton instance = new Singleton();
        /**
         * private 声明构造
         */
        private Singleton() {
    
        }
        /**
         * 返回对象实例
         */
        public static Singleton getInstance() {
            return instance;
        }
    
        public void print() {
            System.out.println("Hello Singleton...");
        }
    }

       1.2、懒汉式

      ——当第一次去使用Singleton对象的时候才会为其产生实例化对象的操作

    class Singleton {
    
        /**
         * 声明变量
         */
        private static volatile Singleton singleton = null;
    
        /**
         * 私有构造方法
         */
        private Singleton() {
    
        }
    
        /**
         * 提供对外方法
         * @return 
         */
        public static Singleton getInstance() {
            // 还未实例化
            if (singleton == null) {
                synchronized (Singleton.class) {
                    if (singleton == null) {
                        singleton = new Singleton();
                    }
                }
            }
            return singleton;
        }
        public void print() {
            System.out.println("Hello World");
        }
    }

      当多个线程并发执行 getInstance 方法时,懒汉式会存在线程安全问题,所以用到了 synchronized 来实现线程的同步,当一个线程获得锁的时候其他线程就只能在外等待其执行完毕。而饿汉式则不存在线程安全的问题。

      2、工厂设计模式

      工厂模式分为工厂方法模式和抽象工厂模式。

      工厂方法模式

    工厂方法模式: 
    1. 工厂方法模式分为三种:普通工厂模式,就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。 
    2. 多个工厂方法模式,是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。 
    3. 静态工厂方法模式,将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

      2.1、普通工厂模式

      建立一个工厂类,对实现了同一接口的一些类进行实例的创建。

    interface Sender {
        void Send();
    }
    
    class MailSender implements Sender {
    
        @Override
        public void Send() {
            System.out.println("This is mail sender...");
        }
    }
    
    class SmsSender implements Sender {
    
        @Override
        public void Send() {
            System.out.println("This is sms sender...");
        }
    }
    
    public class FactoryPattern {
        public static void main(String[] args) {
            Sender sender = produce("mail");
            sender.Send();
        }
        public static Sender produce(String str) {
            if ("mail".equals(str)) {
                return new MailSender();
            } else if ("sms".equals(str)) {
                return new SmsSender();
            } else {
                System.out.println("输入错误...");
                return null;
            }
        }
    }

       2.2、 多个工厂方法模式

      该模式是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。

    interface Sender {
        void Send();
    }
    
    class MailSender implements Sender {
    
        @Override
        public void Send() {
            System.out.println("This is mail sender...");
        }
    }
    
    class SmsSender implements Sender {
    
        @Override
        public void Send() {
            System.out.println("This is sms sender...");
        }
    }
    
    class SendFactory {
        public Sender produceMail() {
            return new MailSender();
        }
    
        public Sender produceSms() {
            return new SmsSender();
        }
    }
    
    public class FactoryPattern {
        public static void main(String[] args) {
            SendFactory factory = new SendFactory();
            Sender sender = factory.produceMail();
            sender.Send();
        }
    }

       2.3、 静态工厂方法模式

      将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

    interface Sender {
        void Send();
    }
    
    class MailSender implements Sender {
    
        @Override
        public void Send() {
            System.out.println("This is mail sender...");
        }
    }
    
    class SmsSender implements Sender {
    
        @Override
        public void Send() {
            System.out.println("This is sms sender...");
        }
    }
    
    class SendFactory {
        public static Sender produceMail() {
            return new MailSender();
        }
    
        public static Sender produceSms() {
            return new SmsSender();
        }
    }
    
    public class FactoryPattern {
        public static void main(String[] args) {
            Sender sender = SendFactory.produceMail();
            sender.Send();
        }
    }

       2.4、抽象工厂模式

      工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要扩展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决? 
      那么这就用到了抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。

    interface Provider {
        Sender produce();
    }
    
    interface Sender {
        void Send();
    }
    
    class MailSender implements Sender {
    
        public void Send() {
            System.out.println("This is mail sender...");
        }
    }
    
    class SmsSender implements Sender {
    
        public void Send() {
            System.out.println("This is sms sender...");
        }
    }
    
    class SendMailFactory implements Provider {
    
        public Sender produce() {
            return new MailSender();
        }
    }
    
    class SendSmsFactory implements Provider {
    
        public Sender produce() {
            return new SmsSender();
        }
    }
    
    
    public class FactoryPattern {
        public static void main(String[] args) {
            Provider provider = new SendMailFactory();
            Sender sender = provider.produce();
            sender.Send();
        }
    }

       3、 建造者模式

      工厂类模式提供的是创建单个类的模式,而建造者模式则是将各种产品集中起来管理,用来创建复合对象,所谓复合对象就是指某个类具有不同的属性。

    import java.util.ArrayList;
    import java.util.List;
    
    /**
     * @Author: LiuWang
     * @Created: 2018/8/6 17:47
     */
    
    abstract class Builder {
        /**
         * 第一步:装CPU
         */
       public abstract void buildCPU();
    
        /**
         * 第二步:装主板
         */
        public abstract void buildMainBoard();
    
        /**
         * 第三步:装硬盘
         */
        public abstract void buildHD();
    
        /**
         * 获得组装好的电脑
         * @return
         */
        public abstract Computer getComputer();
    }
    
    /**
     * 装机人员装机
     */
    class Director {
        public void Construct(Builder builder) {
            builder.buildCPU();
            builder.buildMainBoard();
            builder.buildHD();
        }
    }
    
    /**
     * 具体的装机人员
     */
    class ConcreteBuilder extends  Builder {
    
        Computer computer = new Computer();
    
        @Override
        public void buildCPU() {
            computer.Add("装CPU");
        }
    
        @Override
        public void buildMainBoard() {
            computer.Add("装主板");
        }
    
        @Override
        public void buildHD() {
            computer.Add("装硬盘");
        }
    
        @Override
        public Computer getComputer() {
            return computer;
        }
    }
    
    class Computer {
    
        /**
         * 电脑组件集合
         */
        private List<String> parts = new ArrayList<String>();
    
        public void Add(String part) {
            parts.add(part);
        }
    
        public void print() {
            for (int i = 0; i < parts.size(); i++) {
                System.out.println("组件:" + parts.get(i) + "装好了...");
            }
            System.out.println("电脑组装完毕...");
        }
    }
    
    public class BuilderPattern {
    
        public static void main(String[] args) {
            Director director = new Director();
            Builder builder = new ConcreteBuilder();
            director.Construct(builder);
            Computer computer = builder.getComputer();
            computer.print();
        }
    }

       4、 适配器设计模式

      适配器模式是将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的的类的兼容性问题。

      主要分三类:类的适配器模式、对象的适配器模式、接口的适配器模式。

      4.1、 类的适配器模式:

    class Source {
        public void method1() {
            System.out.println("This is original method...");
        }
    }
    
    interface Targetable {
    
        /**
         * 与原类中的方法相同
         */
        public void method1();
    
        /**
         * 新类的方法
         */
        public void method2();
    }
    
    class Adapter extends Source implements Targetable {
    
        @Override
        public void method2() {
            System.out.println("This is the targetable method...");
        }
    }
    
    public class AdapterPattern {
        public static void main(String[] args) {
            Targetable targetable = new Adapter();
            targetable.method1();
            targetable.method2();
        }
    }

       4.2、 对象的适配器模式

      基本思路和类的适配器模式相同,只是将Adapter 类作修改,这次不继承Source 类,而是持有Source 类的实例,以达到解决兼容性的问题。

    class Source {
        public void method1() {
            System.out.println("This is original method...");
        }
    }
    
    interface Targetable {
    
        /**
         * 与原类中的方法相同
         */
        public void method1();
    
        /**
         * 新类的方法
         */
        public void method2();
    }
    
    class Wrapper implements Targetable {
    
        private Source source;
    
        public Wrapper(Source source) {
            super();
            this.source = source;
        }
    
        @Override
        public void method1() {
            source.method1();
        }
    
        @Override
        public void method2() {
            System.out.println("This is the targetable method...");
        }
    }
    
    public class AdapterPattern {
        public static void main(String[] args) {
            Source source = new Source();
            Targetable targetable = new Wrapper(source);
            targetable.method1();
            targetable.method2();
        }
    }

       4.3、 接口的适配器模式

      接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的,有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法,而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。

    /**
     * 定义端口接口,提供通信服务
     */
    interface Port {
        /**
         * 远程SSH端口为22
         */
        void SSH();
    
        /**
         * 网络端口为80
         */
        void NET();
    
        /**
         * Tomcat容器端口为8080
         */
        void Tomcat();
    
        /**
         * MySQL数据库端口为3306
         */
        void MySQL();
    }
    
    /**
     * 定义抽象类实现端口接口,但是什么事情都不做
     */
    abstract class Wrapper implements Port {
        @Override
        public void SSH() {
    
        }
    
        @Override
        public void NET() {
    
        }
    
        @Override
        public void Tomcat() {
    
        }
    
        @Override
        public void MySQL() {
    
        }
    }
    
    /**
     * 提供聊天服务
     * 需要网络功能
     */
    class Chat extends Wrapper {
        @Override
        public void NET() {
            System.out.println("Hello World...");
        }
    }
    
    /**
     * 网站服务器
     * 需要Tomcat容器,Mysql数据库,网络服务,远程服务
     */
    class Server extends Wrapper {
        @Override
        public void SSH() {
            System.out.println("Connect success...");
        }
    
        @Override
        public void NET() {
            System.out.println("WWW...");
        }
    
        @Override
        public void Tomcat() {
            System.out.println("Tomcat is running...");
        }
    
        @Override
        public void MySQL() {
            System.out.println("MySQL is running...");
        }
    }
    
    public class AdapterPattern {
    
        private static Port chatPort = new Chat();
        private static Port serverPort = new Server();
    
        public static void main(String[] args) {
            // 聊天服务
            chatPort.NET();
    
            // 服务器
            serverPort.SSH();
            serverPort.NET();
            serverPort.Tomcat();
            serverPort.MySQL();
        }
    } 
      5、 装饰模式

      顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例。

    interface Shape {
        void draw();
    }
    
    /**
     * 实现接口的实体类
     */
    class Rectangle implements Shape {
    
        @Override
        public void draw() {
            System.out.println("Shape: Rectangle...");
        }
    }
    
    class Circle implements Shape {
    
        @Override
        public void draw() {
            System.out.println("Shape: Circle...");
        }
    }
    
    /**
     * 创建实现了 Shape 接口的抽象装饰类。
     */
    abstract class ShapeDecorator implements Shape {
        protected Shape decoratedShape;
    
        public ShapeDecorator(Shape decoratedShape) {
            this.decoratedShape = decoratedShape;
        }
    
        @Override
        public void draw() {
            decoratedShape.draw();
        }
    }
    
    /**
     *  创建扩展自 ShapeDecorator 类的实体装饰类。
     */
    class RedShapeDecorator extends ShapeDecorator {
    
        public RedShapeDecorator(Shape decoratedShape) {
            super(decoratedShape);
        }
    
        @Override
        public void draw() {
            decoratedShape.draw();
            setRedBorder(decoratedShape);
        }
    
        private void setRedBorder(Shape decoratedShape) {
            System.out.println("Border Color: Red");
        }
    }
    
    /**
     * 使用 RedShapeDecorator 来装饰 Shape 对象。
     */
    public class DecoratorPattern {
        public static void main(String[] args) {
            Shape circle = new Circle();
            Shape redCircle = new RedShapeDecorator(new Circle());
            Shape redRectangle = new RedShapeDecorator(new Rectangle());
            System.out.println("Circle with normal border");
            circle.draw();
    
            System.out.println("
    Circle of red border");
            redCircle.draw();
    
            System.out.println("
    Rectangle of red border");
            redRectangle.draw();
        }
    }

       6、 策略模式

      策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户。需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无,属于辅助类),提供辅助函数。策略模式的决定权在用户,系统本身提供不同算法的实现,新增或者删除算法,对各种算法做封装。因此,策略模式多用在算法决策系统中,外部用户只需要决定用哪个算法即可。

    /**
     * 抽象算法的策略类,定义所有支持的算法的公共接口
     */
    abstract class Strategy {
        /**
         * 算法方法
         */
        public abstract void AlgorithmInterface();
    }
    
    /**
     * 具体算法A
     */
    class ConcreteStrategyA extends Strategy {
        //算法A实现方法
        @Override
        public void AlgorithmInterface() {
            System.out.println("算法A的实现");
        }
    }
    
    /**
     * 具体算法B
     */
    class ConcreteStrategyB extends Strategy {
        /**
         * 算法B实现方法
         */
        @Override
        public void AlgorithmInterface() {
            System.out.println("算法B的实现");
        }
    }
    
    /**
     * 具体算法C
     */
    class ConcreteStrategyC extends Strategy {
        @Override
        public void AlgorithmInterface() {
            System.out.println("算法C的实现");
        }
    }
    
    /**
     * 上下文,维护一个对策略类对象的引用
     */
    class Context {
        Strategy strategy;
    
        public Context(Strategy strategy) {
            this.strategy = strategy;
        }
    
        public void contextInterface(){
            strategy.AlgorithmInterface();
        }
    }
    
    /**
     * 客户端代码:实现不同的策略
     */
    public class StrategyPattern {
        public static void main(String[] args) {
    
            Context context;
    
            context = new Context(new ConcreteStrategyA());
            context.contextInterface();
    
            context = new Context(new ConcreteStrategyB());
            context.contextInterface();
    
            context = new Context(new ConcreteStrategyC());
            context.contextInterface();
        }
    }

      7、 代理模式

      代理模式指给一个对象提供一个代理对象,并由代理对象控制对原对象的引用。代理可以分为静态代理和动态代理。通过代理模式,可以利用代理对象为被代理对象添加额外的功能,以此来拓展被代理对象的功能。可以用于计算某个方法执行时间,在某个方法执行前后记录日志等操作。

      7.1、 静态代理

      静态代理需要我们写出代理类和被代理类,而且一个代理类和一个被代理类一一对应。代理类和被代理类需要实现同一个接口,通过聚合使得代理对象中有被代理对象的引用,以此实现代理对象控制被代理对象的目的。

    /**
     * 代理类和被代理类共同实现的接口
     */
    interface IService {
    
        void service();
    }
    
    
    /**
     * 被代理类
     */
    class Service implements IService{
    
        @Override
        public void service() {
            System.out.println("被代理对象执行相关操作");
        }
    }
    
    /**
     * 代理类
     */
    class ProxyService implements IService{
        /**
         * 持有被代理对象的引用
         */
        private IService service;
    
        /**
         * 默认代理Service类
         */
        public ProxyService() {
            this.service = new Service();
        }
    
        /**
         * 也可以代理实现相同接口的其他类
         * @param service
         */
        public ProxyService(IService service) {
            this.service = service;
        }
    
        @Override
        public void service() {
            System.out.println("开始执行service()方法");
            service.service();
            System.out.println("service()方法执行完毕");
        }
    }
    
    
    //测试类
    public class ProxyPattern {
    
        public static void main(String[] args) {
            IService service = new Service();
            //传入被代理类的对象
            ProxyService proxyService = new ProxyService(service);
            proxyService.service();
        }
    }

       7.2、 动态代理

      JDK 1.3 之后,Java通过java.lang.reflect包中的三个类Proxy、InvocationHandler、Method来支持动态代理。动态代理常用于有若干个被代理的对象,且为每个被代理对象添加的功能是相同的(例如在每个方法运行前后记录日志)。动态代理的代理类不需要我们编写,由Java自动产生代理类源代码并进行编译最后生成代理对象。 

      创建动态代理对象的步骤: 
      1)指明一系列的接口来创建一个代理对象 
      2)创建一个调用处理器(InvocationHandler)对象 
      3)将这个代理指定为某个其他对象的代理对象 
      4) 在调用处理器的invoke()方法中采取代理,一方面将调用传递给真实对象,另一方面执行各种需要的操作

    import java.lang.reflect.InvocationHandler;
    import java.lang.reflect.Method;
    import java.lang.reflect.Proxy;
    
    /**
     * 代理类和被代理类共同实现的接口
     */
    interface IService {
        void service();
    }
    
    class Service implements IService{
    
        @Override
        public void service() {
            System.out.println("被代理对象执行相关操作");
        }
    }
    
    class ServiceInvocationHandler implements InvocationHandler {
    
        /**
         * 被代理的对象
         */
        private Object srcObject;
    
        public ServiceInvocationHandler(Object srcObject) {
            this.srcObject = srcObject;
        }
    
        @Override
        public Object invoke(Object proxyObj, Method method, Object[] args) throws Throwable {
            System.out.println("开始执行"+method.getName()+"方法");
            //执行原对象的相关操作,容易忘记
            Object returnObj = method.invoke(srcObject,args);
            System.out.println(method.getName()+"方法执行完毕");
            return returnObj;
        }
    }
    
    public class ProxyPattern {
        public static void main(String[] args) {
            IService service = new Service();
            Class<? extends IService> clazz = service.getClass();
    
            IService proxyService = (IService) Proxy.newProxyInstance(clazz.getClassLoader(),
                                            clazz.getInterfaces(), new ServiceInvocationHandler(service));
            proxyService.service();
        }
    }

       8、模板方法模式

    定义:定义了一个算法的骨架,而将一些步骤延迟到子类中,模版方法使得子类可以在不改变算法结构的情况下,重新定义算法的步骤。

       需求:简单描述一下:本公司有程序猿、测试、HR、项目经理等人,下面使用模版方法模式,记录下所有人员的上班情况 

      模板方法模式中的三类角色: 

        1、具体方法(Concrete Method) 

        2、抽象方法(Abstract Method) 

        3、钩子方法(Hook Method) 

     // 具体方法
     public final void workOneDay() {
         Log.e("workOneDay", "-----------------work start----------------");
         enterCompany();
         work();
         exitCompany();
         Log.e("workOneDay", "-----------------work end----------------");
     }
     // 工作  抽象方法
     public abstract void work();
     // 钩子方法
     public boolean isNeedPrintDate() {
         return false;
     }
     private void exitCompany() {
         if (isNeedPrintDate()) {
             Log.e("exitCompany", "---" + new Date().toLocaleString() + "--->");
         }
         Log.e("exitCompany", name + "---离开公司");
     }
     /**
      * 重写父类的此方法,使可以查看离开公司时间
      */
     @Override
     public boolean isNeedPrintDate() {
         return true;
     }

     最后测试: 

      查看所有人员的工作情况:

    QAWorker qaWorker = new QAWorker("测试人员");
     qaWorker();
     HRWorker hrWorker = new HRWorker("莉莉姐");
     hrWorker.workOneDay();
    ...
     

       查看程序猿离开公司的时间:

    ITWorker itWorker = new ITWorker("jingbin");
    itWorker.workOneDay();

      

    参考:

      https://www.cnblogs.com/pony1223/p/7608955.html

       https://blog.csdn.net/gfuugff/article/details/86641373?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-4.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-4.channel_param

      https://www.cnblogs.com/Diyo/p/11415588.html

      https://blog.csdn.net/wmq880204/article/details/75106848

  • 相关阅读:
    如何删除Windows的服务
    在使用ORACLE时常用到的命令和脚本
    windows 查看端口使用情况
    jQuery获取及设置单选框,多选框,文本框内容
    disabled="disabled" readonly="readonly" type="hidden"提交表单的区别
    @Column标记持久化详细说明
    jQuery核心及其工具
    Hibernate JPA注解说明
    php要点
    jQuery中的动画与效果
  • 原文地址:https://www.cnblogs.com/liuxiaochong/p/13536467.html
Copyright © 2011-2022 走看看