zoukankan      html  css  js  c++  java
  • CF 142B Tprimes

    B. T-primes
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    We know that prime numbers are positive integers that have exactly two distinct positive divisors. Similarly, we'll call a positive integer t Т-prime, if thas exactly three distinct positive divisors.

    You are given an array of n positive integers. For each of them determine whether it is Т-prime or not.

    Input

    The first line contains a single positive integer, n (1 ≤ n ≤ 105), showing how many numbers are in the array. The next line contains n space-separated integers xi (1 ≤ xi ≤ 1012).

    Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is advised to use the cincout streams or the %I64d specifier.

    Output

    Print n lines: the i-th line should contain "YES" (without the quotes), if number xi is Т-prime, and "NO" (without the quotes), if it isn't.

    Sample test(s)
    input
    3
    4 5 6
    output
    YES
    NO
    NO
    Note

    The given test has three numbers. The first number 4 has exactly three divisors — 1, 2 and 4, thus the answer for this number is "YES". The second number 5 has two divisors (1 and 5), and the third number 6 has four divisors (1, 2, 3, 6), hence the answer for them is "NO".

     1 #include <cstdio>
     2 #include <iostream>
     3 #include <cmath>
     4 #include <cstring>
     5 using namespace std;
     6 const int MAXN = 1000000+10;
     7 long long int a[100000+10]; bool prime[MAXN];
     8 bool judge(long long int n){
     9   if (n == 1)  return false;
    10   long long int x = (long long)sqrt(n);
    11 //  if (x * x != n) return false;
    12  // else {
    13   //  if (!prime[x]) return true; 
    14    // else return false;
    15 //  }
    16 //  printf("x = %I64d ", x);
    17   if (x * x != n || prime[x]) return false; else return true;
    18 }
    19 int main(void){
    20 #ifndef ONLINE_JUDGE
    21   freopen("tprime.in", "r", stdin);
    22 #endif
    23   int n; memset(prime, false, sizeof(prime));
    24   for (int i = 2; i * i <= MAXN; ++i)
    25     if (prime[i] == false)
    26       for (int j = i*2; j <= MAXN; j+=i)
    27         prime[j] = true;
    28   while (~scanf("%d", &n)){
    29     for (int i = 0; i < n; ++i) cin >> a[i];
    30     for (int i = 0; i < n; ++i)
    31     {
    32       if(judge(a[i])) printf("YES\n"); 
    33       else
    34        printf("NO\n");
    35     }
    36   }
    37   return 0;
    38 }

    这题卡死了……

    关键就是如何判断一个数字是不是完全平方数,方法就是先开方,转化为整型,然后再平方看是不是等于原来的数字。唉,以前做过这种的,很久不做水题了,这种东西都忘了,看来水题还是要做的……

  • 相关阅读:
    第二十二篇、服务器返回的数据转成模型
    第二十一篇、广告轮播器(支持循环滚动)
    【转】android应用程序的安装方式与原理
    【转】Android中处理崩溃异常
    android在Data目录内置可删除的APP
    Ubuntu下修改system.img 解包system.img、打包system.img
    Android studio打包APK混淆配置
    Android获取焦点所在控件
    Android根据APP包名启动应用
    Android自动更新安装后显示‘完成’‘打开’按钮
  • 原文地址:https://www.cnblogs.com/liuxueyang/p/2952817.html
Copyright © 2011-2022 走看看