zoukankan      html  css  js  c++  java
  • CF 142B Tprimes

    B. T-primes
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    We know that prime numbers are positive integers that have exactly two distinct positive divisors. Similarly, we'll call a positive integer t Т-prime, if thas exactly three distinct positive divisors.

    You are given an array of n positive integers. For each of them determine whether it is Т-prime or not.

    Input

    The first line contains a single positive integer, n (1 ≤ n ≤ 105), showing how many numbers are in the array. The next line contains n space-separated integers xi (1 ≤ xi ≤ 1012).

    Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is advised to use the cincout streams or the %I64d specifier.

    Output

    Print n lines: the i-th line should contain "YES" (without the quotes), if number xi is Т-prime, and "NO" (without the quotes), if it isn't.

    Sample test(s)
    input
    3
    4 5 6
    output
    YES
    NO
    NO
    Note

    The given test has three numbers. The first number 4 has exactly three divisors — 1, 2 and 4, thus the answer for this number is "YES". The second number 5 has two divisors (1 and 5), and the third number 6 has four divisors (1, 2, 3, 6), hence the answer for them is "NO".

     1 #include <cstdio>
     2 #include <iostream>
     3 #include <cmath>
     4 #include <cstring>
     5 using namespace std;
     6 const int MAXN = 1000000+10;
     7 long long int a[100000+10]; bool prime[MAXN];
     8 bool judge(long long int n){
     9   if (n == 1)  return false;
    10   long long int x = (long long)sqrt(n);
    11 //  if (x * x != n) return false;
    12  // else {
    13   //  if (!prime[x]) return true; 
    14    // else return false;
    15 //  }
    16 //  printf("x = %I64d ", x);
    17   if (x * x != n || prime[x]) return false; else return true;
    18 }
    19 int main(void){
    20 #ifndef ONLINE_JUDGE
    21   freopen("tprime.in", "r", stdin);
    22 #endif
    23   int n; memset(prime, false, sizeof(prime));
    24   for (int i = 2; i * i <= MAXN; ++i)
    25     if (prime[i] == false)
    26       for (int j = i*2; j <= MAXN; j+=i)
    27         prime[j] = true;
    28   while (~scanf("%d", &n)){
    29     for (int i = 0; i < n; ++i) cin >> a[i];
    30     for (int i = 0; i < n; ++i)
    31     {
    32       if(judge(a[i])) printf("YES\n"); 
    33       else
    34        printf("NO\n");
    35     }
    36   }
    37   return 0;
    38 }

    这题卡死了……

    关键就是如何判断一个数字是不是完全平方数,方法就是先开方,转化为整型,然后再平方看是不是等于原来的数字。唉,以前做过这种的,很久不做水题了,这种东西都忘了,看来水题还是要做的……

  • 相关阅读:
    Mahout 安装配置
    基于 Apache Mahout 构建社会化推荐引擎
    探索推荐引擎内部的秘密,第 2 部分: 深入推荐引擎相关算法
    基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms”
    java书籍推荐:《Java SE 6 技術手册》
    数据库(具体步骤)
    八皇后问题java实现
    最长递增子序列
    C语言中的union使用方法
    chmod和chown命令具体使用方法
  • 原文地址:https://www.cnblogs.com/liuxueyang/p/2952817.html
Copyright © 2011-2022 走看看