zoukankan      html  css  js  c++  java
  • Tiny-ImageNet下载与加载

    Tiny-ImageNet的下载链接如下:http://cs231n.stanford.edu/tiny-imagenet-200.zip

    下载完成后进行解压,可以看到在windows下的目录显示为:

    可以看到train文件夹中,所有图片都像ImageNet一样放在以类别命名的文件夹中,可以不用管,但是val文件夹中同样也需要像Imagenet一样利用脚本将各文件放置于文件夹中,以符合pytorch读取数据的要求,这里我们通过如下脚本实现:

    import glob
    import os
    from shutil import move
    from os import rmdir
    
    target_folder = './tiny-imagenet-200/val/'
    
    val_dict = {}
    with open('./tiny-imagenet-200/val/val_annotations.txt', 'r') as f:
        for line in f.readlines():
            split_line = line.split('	')
            val_dict[split_line[0]] = split_line[1]
            
    paths = glob.glob('./tiny-imagenet-200/val/images/*')
    for path in paths:
        file = path.split('/')[-1]
        folder = val_dict[file]
        if not os.path.exists(target_folder + str(folder)):
            os.mkdir(target_folder + str(folder))
            os.mkdir(target_folder + str(folder) + '/images')
           
    for path in paths:
        file = path.split('/')[-1]
        folder = val_dict[file]
        dest = target_folder + str(folder) + '/images/' + str(file)
        move(path, dest)
        
    rmdir('./tiny-imagenet-200/val/images')
    

    就让Tiny-ImageNet的文件格式基本与ImageNet一致了,在DataLoader时,也可以用相似的代码,这里是将尺寸变成了32来处理

    def tiny_loader(batch_size, data_dir):
        num_label = 200
        normalize = transforms.Normalize((0.4802, 0.4481, 0.3975), (0.2770, 0.2691, 0.2821))
        transform_train = transforms.Compose(
            [transforms.RandomResizedCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(),
             normalize, ])
        transform_test = transforms.Compose([transforms.Resize(32), transforms.ToTensor(), normalize, ])
        trainset = datasets.ImageFolder(root=os.path.join(data_dir, 'train'), transform=transform_train)
        testset = datasets.ImageFolder(root=os.path.join(data_dir, 'val'), transform=transform_test)
        train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, pin_memory=True)
        test_loader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, pin_memory=True)
        return train_loader, test_loader, num_label
    

    就可以正常进行训练了

  • 相关阅读:
    【总结整理】javascript的函数在if中调用时是否加括号---与.net的不同之处
    【总结整理】javascript的函数调用时是否加括号
    【总结整理】JavaScript的DOM事件学习(慕课网)
    关于overflow:hidden (转)
    CSS
    HTML
    jQuery
    函数
    装饰器
    python的条件与循环1
  • 原文地址:https://www.cnblogs.com/liuyangcode/p/14689893.html
Copyright © 2011-2022 走看看