zoukankan      html  css  js  c++  java
  • 生成回归数据集(make_regression)

    import numpy as np
    from matplotlib import pyplot as plt
    
    from sklearn import linear_model, datasets
    
    
    n_samples = 1000
    n_outliers = 50
    
    
    X, y, coef = datasets.make_regression(n_samples=n_samples, n_features=1,
                                          n_informative=1, noise=10,
                                          coef=True, random_state=0)
    
    # Add outlier data
    np.random.seed(0)
    X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1))
    y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers)
    
    # Fit line using all data
    lr = linear_model.LinearRegression()
    lr.fit(X, y)
    
    # Robustly fit linear model with RANSAC algorithm
    ransac = linear_model.RANSACRegressor()
    ransac.fit(X, y)
    inlier_mask = ransac.inlier_mask_
    outlier_mask = np.logical_not(inlier_mask)
    
    # Predict data of estimated models
    line_X = np.arange(X.min(), X.max())[:, np.newaxis]
    line_y = lr.predict(line_X)
    line_y_ransac = ransac.predict(line_X)
    
    # Compare estimated coefficients
    print("Estimated coefficients (true, linear regression, RANSAC):")
    print(coef, lr.coef_, ransac.estimator_.coef_)
    
    lw = 2
    plt.scatter(X[inlier_mask], y[inlier_mask], color='yellowgreen', marker='.',
                label='Inliers')
    plt.scatter(X[outlier_mask], y[outlier_mask], color='gold', marker='.',
                label='Outliers')
    plt.plot(line_X, line_y, color='navy', linewidth=lw, label='Linear regressor')
    plt.plot(line_X, line_y_ransac, color='cornflowerblue', linewidth=lw,
             label='RANSAC regressor')
    plt.legend(loc='lower right')
    plt.xlabel("Input")
    plt.ylabel("Response")
    plt.show()
  • 相关阅读:
    ubuntu 开启ssh
    ubuntu 电源管理
    吸血鬼数
    java泛型
    分布式数据库主键id生成策略
    使用SSH工具连接到MySQL
    MySQL命令行基本命令操作
    bootstrap图片轮播
    java设计模式----工厂模式
    java设计模式----享元模式
  • 原文地址:https://www.cnblogs.com/liuys635/p/14448284.html
Copyright © 2011-2022 走看看