zoukankan      html  css  js  c++  java
  • 机器学习之旅|开始你的第一个机器学习项目

    前言

    大家好,关于数据挖掘或者机器学习的理论我想大家应该都已经了解很多,而数据挖掘的工具例如PandasNumPySklearn等在历史文章都有所介绍,因此今天我们将开始第一个也是很多人入门机器学习的项目:简单线性回归模型——通过工作年限预测薪水。先来回顾一下基本步骤:

    • 加载清洗数据

    • 建立、调整模型

    • 分析预测

    加载并观察数据

    首先我们打开Jupyter Notebook导入相关库并加载数据

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.metrics import accuracy_score
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    data = pd.read_excel('salary.xlsx')

    接着查看数据

    再查看一下描述性统计摘要

    可以看到,我们的数据集非常简单所以不需要进行清洗,仅有两个变量:工作年限、薪资水平。一共10行2列,通过观察数据并结合经验,可以认为工作年限与薪资水平应该成线性关系,因此我们接下来将建立线性回归模型(有监督)

    建模预测

    现在开始建模预测,虽然数据不大但是我们仍将它划分为训练集和测试集

    X = data[['工作年限']]
    y = data['薪水']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=101)

    接下来使用Sklearn包中的LinearRegression这个类来训练模型

    model = LinearRegression()
    model.fit(X_train,y_train)

    在模型训练完毕之后,让我们使用之前的测试数据集来判断模型的准确性

    当然也可以绘制散点图和回归直线来判断

    可以看到我们的模型拥有100%的准确性,不过在真实的数据中几乎不可能出现这样的结果,一般超过90%的准确性就很好了,当然现在我们还可以使用其他数据来进行预测,比如预测拥有6.6年的工作经验对应的薪资水平是16300元。

    结束语

    以上就是使用Sklearn进行一次简单的回归建模预测的过程,也是我学习入门的案例,虽然简单,但是应该足够让小白搞懂基本流程,下一期来我们将使用著名的IRIS数据集来讲一讲分类。

  • 相关阅读:
    bzoj 2120 数颜色 带修改莫队
    luogu 2709 小B的询问 莫队
    bzoj 2002 [Hnoi2010]Bounce 弹飞绵羊 分块
    bzoj 4765 普通计算姬 dfs序 + 分块
    loj 数列分块入门 6 9(区间众数)
    loj 数列分块入门 5 7 8
    AtCoder Grand Contest 021 D
    Codeforces Round #466
    office 威胁检测
    修改macos的启动LOGO
  • 原文地址:https://www.cnblogs.com/liuzaoqi/p/13041406.html
Copyright © 2011-2022 走看看