题目描述
Now, here is a fuction:
F(x) = 6 * x^7+8x^6+7x^3+5x^2-yx (0 <= x <=100)
Can you find the minimum value when x is between 0 and 100.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has only one real numbers Y.(0 < Y <1e10)
Output
Just the minimum value (accurate up to 4 decimal places),when x is between 0 and 100.
Sample Input
2
100
200
Sample Output
-74.4291
-178.8534
大意
求函数在区间[0,100]的最小值
思路
对函数求导得F’(x)=42* x^6+48x^5+21x^2+10x-y
,再对导函数求导,发现导函数是单调递增的。
得到结论,函数的最小值点为
42 x^6+48x^5+21x^2+10*x=y的根。
程序应首先判断根是否在[0,100]区间内,分为三种情况讨论。
这一题的代码与第一题差别不大,是第一题的变形
AC代码
#include<iostream>#include<iomanip>#include<stdio.h>#include<cmath>using namespace std;double f_d(double res){return res*res*res*res *res*res*42 + res*res*res*res*res*48 + res*res*21 + res * 10;}double f(double res,double y){return res*res*res*res*res*res*res*6 + res*res*res*res*res*res*8 + res*res*res*7 + res*res* 5-res*y;}int main(){//freopen("date.in", "r", stdin);//freopen("date.out", "w", stdout);int T;double a;double b,e,tem;cin>>T;for(int i=0;i<T;i++){cin>>a;if(f_d(100)<=a)cout<<fixed<<setprecision(4)<<f(100,a)<<endl;elseif(f_d(0)>=a)cout<<fixed<<setprecision(4)<<f(0,a)<<endl;else{b = 0, e = 100, tem = 50;while (fabs(f_d(tem) - a) >= 1e-7)if (f_d(tem)>a){e = tem;tem = (b + e) / 2;}else{b = tem;tem = (b + e) / 2;}cout<<fixed<<setprecision(4)<<f(tem,a)<<endl;}}}