zoukankan      html  css  js  c++  java
  • 专题三--1009

    这一道题是看题解过的,实在是太难了。。好难找的规律。。好坑的思路。在我的这个博客里引用http://m.blog.csdn.net/article/details?id=50638393 中的题解思路,这个题解还使用了矩阵快速幂的方法,具体见这个blog

    题目

    Problem Description
    Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time.

    Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
    Your task is to calculate the number of E-queues mod M with length L by writing a program.

    Input
    Input a length L (0 <= L <= 10 6) and M.

    Output
    Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.

    Sample Input

    3 8
    4 7
    4 8
    

    Sample Output

    6
    2
    1
    

    思路

    用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);
    如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是
    mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)
    所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂
    构造一个矩阵:
    pic

    代码

    1. #include<iostream>
    2. #include<stdio.h>
    3. usingnamespace std;
    4. int n,m;
    5. int f[5]={0,2,4,6,9};
    6. int a[4][4],b[4][4],c[4][4];
    7. void multi(int(*x)[4],int(*y)[4])
    8. {
    9. int i,j,k;
    10. for(i=0;i<4;i++)
    11. for(j=0;j<4;j++)
    12. for(c[i][j]=k=0;k<4;k++)
    13. c[i][j]+=x[i][k]*y[k][j];
    14. for(i=0;i<4;i++)
    15. for(j=0;j<4;j++)
    16. x[i][j]=c[i][j]%m;
    17. }
    18. int main()
    19. {
    20. //freopen("date.in","r",stdin);
    21. //freopen("date.out","w",stdout);
    22. int i,j;
    23. while(scanf("%d%d",&n,&m)==2)
    24. {
    25. if(n<=4){printf("%d ",f[n]%m);continue;}
    26. a[0][0]=a[0][2]=a[0][3]=1,a[0][1]=0;
    27. a[1][0]=1,a[1][1]=a[1][2]=a[1][3]=0;
    28. a[2][0]=a[2][2]=a[2][3]=0,a[2][1]=1;
    29. a[3][0]=a[3][1]=a[3][3]=0,a[3][2]=1;
    30. for(i=0;i<4;i++)
    31. for(j=0;j<4;j++)
    32. b[i][j]=(i==j);
    33. for(n-=4;n;multi(a,a),n>>=1)if(n&1)multi(b,a);
    34. for(j=0,i=0;i<4;i++)j+=b[0][i]*f[4-i];
    35. printf("%d ",j%m);
    36. }
    37. return0;
    38. }





  • 相关阅读:
    PHP学习(字符串和变量)
    一个操作配置文件(Reg,ini,XML)的类
    Indy中判断邮件来源
    PHP学习(MSSQL数据库连接)
    辛辛苦苦,写了个INNO的安装脚本
    php连接sqlserver
    Sql Server 使用CTE实现递归查询
    使用序列化和反序列化机制深度复制对象
    ASP.NET中不常用的另类绑定方法<%$ %>
    google map事件监听
  • 原文地址:https://www.cnblogs.com/liuzhanshan/p/5538738.html
Copyright © 2011-2022 走看看