Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2
3
4
Sample Output
2
2
Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
Author
Ignatius.L
首先,暴力算是一定会超时的,而且这么大的数也存不下
这道题运用了取对数来缩小运算范围,
推导过程如下:
设M=N^N,则log10(M)=Nlog10(N);
所以M=10^(Nlog10(N));
继续转化
令N=x10^y 例如:155555555=1.5555555510^8;
M=10^(Nlog10(x10^y)=10^(N(y+log10x))=10^(Ny)*log10x
so, 只要求出log10x即可
取整即可