zoukankan      html  css  js  c++  java
  • python解决上楼梯问题

    假设一段楼梯共n(n>1)个台阶,小朋友一步最多能上3个台阶,那么小朋友上这段楼梯一共有多少种方法

    (此为京东2016年笔试题目)

    假设n为15,从第15个台阶上往回看,有3种方法可以上来(从第14个台阶上一步迈1个台阶上来,从第13个台阶上一步迈2个台阶上来,从第12个台阶上一步迈3个台阶上来),
    同理,第14个、13个、12个台阶都可以这样推算,从而得到公式f(n) = f(n-1) + f(n-2) + f(n-3),其中n=15、14、13、...、5、4。然后就是确定这个递归公式的结束条件了,
    第一个台阶只有1种上法,第二个台阶有2种上法(一步迈2个台阶上去、一步迈1个台阶分两步上去),第三个台阶有4种上法

    代码如下

    n = int(input())
    a = 1
    b = 2
    c = 4
    for i in range(n-3):
        c, b, a = a+b+c, c, b
    print(c)

    截图如下

    (来让小朋友把这些走法挨个走一遍......)

    这里提一下上面的

    c, b, a = a+b+c, c, b

    这段代码的用法

    这段代码是先计算右边的数值,先计算a + b + c

    然后从右边开始先将b的值赋给a,再将c的值赋给b,最后将a + b + c的值赋给c

    这段代码等价于

    m = a + b +c

    a = b

    b = c

    c = m

    (其实我还是喜欢下面这样写,容易懂)

  • 相关阅读:
    PHPLIB Template入门系列 4 模板嵌套
    jQuery 实例
    建立PHP的本地调试环境
    PHP缓存memcache简单应用
    PHP程序:虚拟域名服务DIY
    去掉网络共享的session
    C# 里EF 对Mysql DB更新,乱码
    sshd的log的位置
    cURL 访问https失败
    Eclipse中编辑properties文件的编码问题
  • 原文地址:https://www.cnblogs.com/liuzhaowei/p/10770878.html
Copyright © 2011-2022 走看看