1
一个不成熟的想法
预处理(sumlimits_{xin B}x),分数模拟。(会炸!哭了....但是我觉得具有正确性)
考察集合(A={0},B={x_1,x_2,...,x_n})
先模拟(n=3)
则:
第一种情况:$ ext{ans}=dfrac{x_1}{2}+dfrac{x_1+x_3}{3}+dfrac{x_1+x_2+x_3}{4} $
第二种情况:$ ext{ans}=dfrac{x_1}{2}+dfrac{x_1+x_2}{3}+dfrac{x_1+x_2+x_3}{4} $
第三种情况:$ ext{ans}=dfrac{x_2}{2}+dfrac{x_2+x_3}{3}+dfrac{x_1+x_2+x_3}{4} $
第四种情况:$ ext{ans}=dfrac{x_2}{2}+dfrac{x_1+x_2}{3}+dfrac{x_1+x_2+x_3}{4} $
第五种情况:$ ext{ans}=dfrac{x_3}{2}+dfrac{x_3+x_2}{3}+dfrac{x_1+x_2+x_3}{4} $
第六种情况:$ ext{ans}=dfrac{x_3}{2}+dfrac{x_1+x_3}{3}+dfrac{x_1+x_2+x_3}{4} $
总:( ext{ans} _ 6=2 imes dfrac{x_1+x_2+x_3}{2}+4 imes dfrac{x_1+x_2+x_3}{3}+6 imes dfrac{x_1+x_2+x_3}{4})
推算过程如下:
经化简整理可得前述答案
2
考虑最优操作到底是什么样的
假设只有两个发生器,那么如果放弃第一个选用第二个,第二个发生器产生的数的期望是(Y=dfrac{L_2+R_2}{2})。不难想到如果第一个发生器产生了(X),(X<Y)时放弃(X)更优,否则拿走(X)更优。
更一般的,假设当前在使用第(i)个发生器,其产生了(X),设其从第(i+1)个发生器开始游戏得到的最优答案是(f_{i+1}),那么比较(X,f_{i+1})的大小关系就可以确定是否拿走(X),那么(f_i)的计算就是一个一次函数的积分,进行加权平均数(是人话吗是人话吗)。
复杂度(O(n))。