题目描述
思路
因为树状数组update是会一直更新到最后的节点,查询的也是端点的情况,所以用两个树状数组来维护一段区间
每次给定一个区间(l, r)变换, 就是update(l, 1, start), update(r, 1, ed)
注意 update(r, 1, ed), 而不是update(r + 1, 1, ed), 在查询[r+ 1, r+ 1]会出现有树的情况,实际上应该没有树
查询区间(L, R),就是sum(R, start) - sum(L - 1, ed)
代码
#include <cstdio>
#include <cstring>
int arrSt[100005], arrEd[100005];
int n, m, lowbit[100005];
inline int read() {
int s = 0;
char ch = getchar();
while (ch < '0' || ch > '9') ch = getchar();
while (ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
return s;
}
void update(int x, int y, int * arr) {
while (x <= n + 1) {
arr[x] += y;
x += lowbit[x];
}
}
int sum(int x, int * arr) {
int res = 0;
while (x) {
res += arr[x];
x -= lowbit[x];
}
return res;
}
int main() {
n = read(), m = read();
for (int i = 1; i <= n + 1; ++i) {
lowbit[i] = i & (-i);
}
for (int i = 1, a, b, c; i <= m; ++i) {
a = read();
if (a == 1) {
b = read(), c = read();
update(b, 1, arrSt), update(c, 1, arrEd);
} else {
b = read();
if ((sum(b, arrSt) - sum(b - 1, arrEd)) % 2 == 0) puts("0");
else puts("1");
}
}
return 0;
}