zoukankan      html  css  js  c++  java
  • Sequential access memory(SAM) and (RAM), Flash memory

    In computing, sequential access memory (SAM) is a class of data storage devices that read their data in sequence. This is in contrast to random access memory (RAM) where data can be accessed in any order. Sequential access devices are usually a form of magnetic memory.

    While sequential access memory is read in sequence, accesses can still be made to arbitrary locations by "seeking" to the requested location. This operation, however, is often relatively inefficient (see seek time, rotational latency).

    Magnetic sequential access memory is typically used for secondary storage in general-purpose computers due to their higher density at lower cost compared to RAM, as well as resistance to wear and non-volatility. Examples of SAM devices still in use include hard disks, CD-ROMs and magnetic tapes. Historically, drum memory has also been used.

    ----------------------------------------------------------------------------------------------------------------------------------------------

    Random-access memory (RAM pronounced /ræm/) is a form of computer data storage. A random-access device allows stored data to be accessed directly in any random order. In contrast, other data storage media such as hard disks, CDs, DVDs and magnetic tape, as well as early primary memory types such as drum memory, read and write data only in a predetermined order, consecutively, because of mechanical design limitations. Therefore the time to access a given data location varies significantly depending on its physical location.

    ----------------------------------------------------------------------------------------------------------------------------------------

    Flash memory is an electronic non-volatile computer storage device that can be electrically erased and reprogrammed.

    Flash memory was developed from EEPROM (electrically erasable programmable read-only memory). There are two main types of flash memory, which are named after the NAND and NOR logic gates. The internal characteristics of the individual flash memory cells exhibit characteristics similar to those of the corresponding gates.

    Whereas EPROMs had to be completely erased before being rewritten, NAND type flash memory may be written and read in blocks (or pages) which are generally much smaller than the entire device. The NOR type allows a single machine word (byte) to be written or read independently.

    The NAND type is primarily used in main memory, memory cards, USB flash drives, solid-state drives, and similar products, for general storage and transfer of data. The NOR type, which allows true random access and therefore direct code execution, is used as a replacement for the older EPROM and as an alternative to certain kinds of ROM applications, whereas NOR flash memory may emulate ROM primarily at the machine code level; many digital designs need ROM (or PLA) structures for other uses, often at significantly higher speeds than (economical) flash memory may achieve. NAND or NOR flash memory is also often used to store configuration data in numerous digital products, a task previously made possible by EEPROMs or battery-powered static RAM.

    Example applications of both types of flash memory include personal computers, PDAs, digital audio players, digital cameras, mobile phones, synthesizers, video games, scientific instrumentation, industrial robotics, medical electronics, and so on. In addition to being non-volatile, flash memory offers fast read access times, as fast as dynamic RAM, although not as fast as static RAM or ROM. Its mechanical shock resistance helps explain its popularity over hard disks in portable devices, as does its high durability, being able to withstand high pressure, temperature, immersion in water, etc.[1]

    Although flash memory is technically a type of EEPROM, the term "EEPROM" is generally used to refer specifically to non-flash EEPROM which is erasable in small blocks, typically bytes. Because erase cycles are slow, the large block sizes used in flash memory erasing give it a significant speed advantage over old-style EEPROM when writing large amounts of data. Flash memory now costs far less than byte-programmable EEPROM and has become the dominant memory type wherever a significant amount of non-volatile, solid state storage is needed.

    ---------------------------------------------------------------------------------------------------------------------------------------------

    The three main forms of modern RAM are static RAM (SRAM), dynamic RAM (DRAM) and phase-change memory (PRAM). In SRAM, a bit of data is stored using the state of a flip-flop. This form of RAM is more expensive to produce, but is generally faster and requires less power than DRAM and, in modern computers, is often used as cache memory for the CPU. DRAM stores a bit of data using a transistor and capacitor pair, which together comprise a memory cell. The capacitor holds a high or low charge (1 or 0, respectively), and the transistor acts as a switch that lets the control circuitry on the chip read the capacitor's state of charge or change it. As this form of memory is less expensive to produce than static RAM, it is the predominant form of computer memory used in modern computers.

    Both static and dynamic RAM are considered volatile, as their state is lost or reset when power is removed from the system. By contrast, read-only memory (ROM) stores data by permanently enabling or disabling selected transistors, such that the memory cannot be altered. Writeable variants of ROM (such as EEPROM and flash memory) share properties of both ROM and RAM, enabling data to persist without power and to be updated without requiring special equipment. These persistent forms of semiconductor ROM include USB flash drives, memory cards for cameras and portable devices, etc. As of 2007, NAND flash has begun to replace older forms of persistent storage, such as magnetic disks and tapes, while NOR flash is being used in place of ROM in netbooks and rugged computers, since it is capable of true random access, allowing direct code execution.

    ECC memory (which can be either SRAM or DRAM) includes special circuitry to detect and/or correct random faults (memory errors) in the stored data, using parity bits or error correction code.

    In general, the term RAM refers solely to solid-state memory devices (either DRAM or SRAM), and more specifically the main memory in most computers. In optical storage, the term DVD-RAM is somewhat of a misnomer since, unlike CD-RW or DVD-RW it does not need to be erased before reuse. Nevertheless a DVD-RAM behaves much like a hard disc drive if somewhat slower.

  • 相关阅读:
    Leetcode 109
    Leetcode 118
    js时间操作
    DWR搭建以及使用教程
    Ant 概念
    Eclipse 快捷键
    [eclipse] 三个操作技巧
    js call方法
    js验证密码强弱
    request getParameter getAttribute
  • 原文地址:https://www.cnblogs.com/lixiaofei1987/p/3085228.html
Copyright © 2011-2022 走看看