zoukankan      html  css  js  c++  java
  • Tensorflow样例代码分析cifar10

    github地址:https://github.com/tensorflow/models.git

    本文分析tutorial/image/cifar10教程项目的cifar10_input.py代码。

    给外部调用的方法是:

    distorted_inputs()和inputs()
    cifar10.py文件调用了此文件中定义的方法。
    """Routine for decoding the CIFAR-10 binary file format."""
    
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import os
    
    from six.moves import xrange  # pylint: disable=redefined-builtin
    import tensorflow as tf
    
    # 定义图片的像素,原生图片32 x 32
    # Process images of this size. Note that this differs from the original CIFAR
    # image size of 32 x 32. If one alters this number, then the entire model
    # architecture will change and any model would need to be retrained.
    # IMAGE_SIZE = 24
    IMAGE_SIZE = 32
    # Global constants describing the CIFAR-10 data set.
    # 分类数量
    NUM_CLASSES = 10
    # 训练集大小
    NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
    # 评价集大小
    NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000
    
    
    # 从CIFAR10数据文件中读取样例
    # filename_queue一个队列的文件名
    def read_cifar10(filename_queue):
    
    
        class CIFAR10Record(object):
            pass
    
        result = CIFAR10Record()
    
        # Dimensions of the images in the CIFAR-10 dataset.
        # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
        # input format.
        # 分类结果的长度,CIFAR-100长度为2
        label_bytes = 1  # 2 for CIFAR-100
        result.height = 32
        result.width = 32
        # 3位表示rgb颜色(0-255,0-255,0-255)
        result.depth = 3
        image_bytes = result.height * result.width * result.depth
        # Every record consists of a label followed by the image, with a
        # fixed number of bytes for each.
        # 单个记录的总长度=分类结果长度+图片长度
        record_bytes = label_bytes + image_bytes
    
        # Read a record, getting filenames from the filename_queue.  No
        # header or footer in the CIFAR-10 format, so we leave header_bytes
        # and footer_bytes at their default of 0.
        # 读取
        reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
        result.key, value = reader.read(filename_queue)
    
        # Convert from a string to a vector of uint8 that is record_bytes long.
        record_bytes = tf.decode_raw(value, tf.uint8)
    
        # 第一位代表lable-图片的正确分类结果,从uint8转换为int32类型
        # The first bytes represent the label, which we convert from uint8->int32.
        result.label = tf.cast(
            tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)
    
        # 分类结果之后的数据代表图片,我们重新调整大小
        # The remaining bytes after the label represent the image, which we reshape
        # from [depth * height * width] to [depth, height, width].
        depth_major = tf.reshape(
            tf.strided_slice(record_bytes, [label_bytes],
                             [label_bytes + image_bytes]),
            [result.depth, result.height, result.width])
        # 格式转换,从[颜色,高度,宽度]--》[高度,宽度,颜色]
        # Convert from [depth, height, width] to [height, width, depth].
        result.uint8image = tf.transpose(depth_major, [1, 2, 0])
    
        return result
    
    
    # 构建一个排列后的一组图片和分类
    def _generate_image_and_label_batch(image, label, min_queue_examples,
                                        batch_size, shuffle):
    
        # Create a queue that shuffles the examples, and then
        # read 'batch_size' images + labels from the example queue.
        # 线程数
        num_preprocess_threads = 8
        if shuffle:
            images, label_batch = tf.train.shuffle_batch(
                [image, label],
                batch_size=batch_size,
                num_threads=num_preprocess_threads,
                capacity=min_queue_examples + 3 * batch_size,
                min_after_dequeue=min_queue_examples)
        else:
            images, label_batch = tf.train.batch(
                [image, label],
                batch_size=batch_size,
                num_threads=num_preprocess_threads,
                capacity=min_queue_examples + 3 * batch_size)
    
        # Display the training images in the visualizer.
        tf.summary.image('images', images)
    
        return images, tf.reshape(label_batch, [batch_size])
    
    
    
    # 为CIFAR评价构建输入
    # data_dir路径
    # batch_size一个组的大小
    def distorted_inputs(data_dir, batch_size):
      
        filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
                     for i in xrange(1, 6)]
        for f in filenames:
            if not tf.gfile.Exists(f):
                raise ValueError('Failed to find file: ' + f)
    
        # Create a queue that produces the filenames to read.
        filename_queue = tf.train.string_input_producer(filenames)
    
        # Read examples from files in the filename queue.
        read_input = read_cifar10(filename_queue)
        reshaped_image = tf.cast(read_input.uint8image, tf.float32)
    
        height = IMAGE_SIZE
        width = IMAGE_SIZE
    
        # Image processing for training the network. Note the many random
        # distortions applied to the image.
        # 随机裁剪图片
        # Randomly crop a [height, width] section of the image.
        distorted_image = tf.random_crop(reshaped_image, [height, width, 3])
        # 随机旋转图片
        # Randomly flip the image horizontally.
        distorted_image = tf.image.random_flip_left_right(distorted_image)
    
        # Because these operations are not commutative, consider randomizing
        # the order their operation.
        # 亮度变换
        distorted_image = tf.image.random_brightness(distorted_image,
                                                     max_delta=63)
        # 对比度变换
        distorted_image = tf.image.random_contrast(distorted_image,
                                                   lower=0.2, upper=1.8)
    
        # Subtract off the mean and divide by the variance of the pixels.
        # Linearly scales image to have zero mean and unit norm
        # 标准化
        float_image = tf.image.per_image_standardization(distorted_image)
    
        # Set the shapes of tensors.
        # 设置张量的型
        float_image.set_shape([height, width, 3])
        read_input.label.set_shape([1])
    
        # Ensure that the random shuffling has good mixing properties.
        # 确保洗牌的随机性
        min_fraction_of_examples_in_queue = 0.4
        min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
                                 min_fraction_of_examples_in_queue)
        print('Filling queue with %d CIFAR images before starting to train. '
              'This will take a few minutes.' % min_queue_examples)
    
        # Generate a batch of images and labels by building up a queue of examples.
        return _generate_image_and_label_batch(float_image, read_input.label,
                                               min_queue_examples, batch_size,
                                               shuffle=True)
    
    
    # 为CIFAR评价构建输入
    # eval_data使用训练还是评价数据集
    # data_dir路径
    # batch_size一个组的大小
    def inputs(eval_data, data_dir, batch_size):
       
        if not eval_data:
            filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
                         for i in xrange(1, 6)]
            num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
        else:
            filenames = [os.path.join(data_dir, 'test_batch.bin')]
            num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
    
        for f in filenames:
            if not tf.gfile.Exists(f):
                raise ValueError('Failed to find file: ' + f)
    
        # Create a queue that produces the filenames to read.
        # 文件名队列
        filename_queue = tf.train.string_input_producer(filenames)
    
        # Read examples from files in the filename queue.
        # 从文件中读取解析出的图片队列
        read_input = read_cifar10(filename_queue)
        # 转换为float
        reshaped_image = tf.cast(read_input.uint8image, tf.float32)
    
        height = IMAGE_SIZE
        width = IMAGE_SIZE
    
        # Image processing for evaluation.
        # Crop the central [height, width] of the image.
        # 剪切图片的中心
        resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                               height, width)
    
        # Subtract off the mean and divide by the variance of the pixels.
        # 标准化图片
        float_image = tf.image.per_image_standardization(resized_image)
    
        # Set the shapes of tensors.
        # 设置张量的型
        float_image.set_shape([height, width, 3])
        read_input.label.set_shape([1])
    
        # Ensure that the random shuffling has good mixing properties.
        # 确保洗牌的随机性
        min_fraction_of_examples_in_queue = 0.4
        min_queue_examples = int(num_examples_per_epoch *
                                 min_fraction_of_examples_in_queue)
    
        # Generate a batch of images and labels by building up a queue of examples.
        return _generate_image_and_label_batch(float_image, read_input.label,
                                               min_queue_examples, batch_size,
                                               shuffle=False)
     
  • 相关阅读:
    android的左右滑动效果实现-ViewFlipper
    ios学习之UISwipeGestureRecognizer手势识别
    iOS使用AVFoundation实现二维码扫描
    IOS开发之Core Location
    iOS中如何创建一个滑出式导航面板(1)
    消息推送之百度云推送Android集成与使用方法
    IOS开发之Storyboard应用
    用CocoaPods做iOS程序的依赖管理
    RelativeLayout 布局参数
    Android中获取应用程序(包)的信息-----PackageManager的使用
  • 原文地址:https://www.cnblogs.com/lixiaoran/p/6740022.html
Copyright © 2011-2022 走看看