zoukankan      html  css  js  c++  java
  • 一些gcd计数问题

    数论什么的全都忘光了吧QAQ 做了几道简单的题练习一下。

    bzoj1101: [POI2007]Zap

    求有多少对数满足 gcd(x,y)=d, 1<=x<=a, 1<=y<=b

    首先那个d肯定是要除下去的, 变成 gcd(x,y) = 1, 1<=x<=a, 1<=y<=b这样一个问题。

    这样就变成了最经典的莫比乌斯反演, 设f(d)为 gcd(x,y) = d, 1<=x<=a, 1<=y<=b时满足要求的x,y的个数,F(d) = Σ(d|n)f(n) = [a/d] * [b/d], 那么f(1) = Σ μ(d) * [a/d] * [b/d]

    复杂度是O(n)的, 但是多组询问会T,这时候想到了bzoj1257 CQOI2007]余数之和sum的思想:对于一个N, [n/d]的取值是sqrt(n)级别的(显然当d <= sqrt(n),只有sqrt(n)个d所以有sqrt(n)中取值, 当d > sqrt(n), n/d < sqrt(n)所以只有sqrt(n)中取值), 所以只要在 a/d或是b/d中有任何一个变化了以后再计算对f(1)的贡献就可以了,存一个μ的前缀和就行了。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #define MAXN 50005
     7 using namespace std;
     8 int T, a, b, d;
     9 int prim[MAXN], pp, isprim[MAXN], miu[MAXN];
    10 int main(){
    11     scanf("%d", &T);
    12     miu[1] = 1;
    13     for(int i = 2; i <= 50000; i ++){
    14         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1;
    15         for(int j = 1; j <= pp && i*prim[j] <= 50000; j ++){
    16             isprim[i*prim[j]] = 1;
    17             if(i%prim[j] == 0) break;
    18             miu[i*prim[j]] = -miu[i];
    19         }
    20     }
    21     for(int i = 2; i <= 50000; i ++) miu[i] += miu[i-1];
    22     while(T --){
    23         scanf("%d%d%d", &a, &b, &d); a /= d, b /= d;
    24         int now = 1, aa = a, bb = b, na = 1, nb = 1, ans = 0;
    25         while(1){
    26             if(na < nb){
    27                 ans += (miu[na]-miu[now-1]) * aa * bb;
    28                 now = na+1; if(now > a) break;
    29                 aa = a/now;
    30                 na = a/aa;
    31             }else{
    32                 ans += (miu[nb]-miu[now-1]) * aa * bb;
    33                 if(na == nb){
    34                     now = na+1; if(now > a) break;
    35                     aa = a/now;
    36                     na = a/aa;        
    37                 }
    38                 now = nb+1; if(now > b) break;
    39                 bb = b/now;
    40                 nb = b/bb;
    41             }
    42         }
    43         printf("%d
    ", ans);
    44     }
    45 //    system("pause");
    46     return 0;
    47 }
    View Code

    bzoj2301: [HAOI2011]Problem b]

    求有多少对数满足 gcd(x,y)=k, a<=x<=b, c<=y<=d

    上一题然后随便容斥一下,,没什么好说的

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #define MAXN 50005
     7 using namespace std;
     8 int T, a, b, c, d, k;
     9 int prim[MAXN], pp, isprim[MAXN], miu[MAXN];
    10 int calc(int a, int b){ if(a <= 0 || b <= 0) return 0;
    11     int now = 1, aa = a, bb = b, na = 1, nb = 1, ans = 0;
    12         while(1){
    13             if(na < nb){
    14                 ans += (miu[na]-miu[now-1]) * aa * bb;
    15                 now = na+1; if(now > a) break;
    16                 aa = a/now;
    17                 na = a/aa;
    18             }else{
    19                 ans += (miu[nb]-miu[now-1]) * aa * bb;
    20                 if(na == nb){
    21                     now = na+1; if(now > a) break;
    22                     aa = a/now;
    23                     na = a/aa;        
    24                 }
    25                 now = nb+1; if(now > b) break;
    26                 bb = b/now;
    27                 nb = b/bb;
    28             }
    29         }
    30     return ans;
    31 }
    32 int main(){
    33     scanf("%d", &T);
    34     miu[1] = 1;
    35     for(int i = 2; i <= 50000; i ++){
    36         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1;
    37         for(int j = 1; j <= pp && i*prim[j] <= 50000; j ++){
    38             isprim[i*prim[j]] = 1;
    39             if(i%prim[j] == 0) break;
    40             miu[i*prim[j]] = -miu[i];
    41         }
    42     }
    43     for(int i = 2; i <= 50000; i ++) miu[i] += miu[i-1];
    44     while(T --){
    45         scanf("%d%d%d%d%d", &a, &b ,&c, &d, &k); a --; c --; a /= k, b /= k, c /= k, d /= k;
    46         printf("%d
    ", calc(b, d) - calc(a, d) - calc(c, b) + calc(a, c));
    47     }
    48     return 0;
    49 }
    View Code

    bzoj2820: YY的GCD

    1<=x<=N1<=y<=Mgcd(x,y)为质数有多少对

    天啊窝一定是世界上最后一个知道 [n/(x*y)] = [[n/x]/y] 的人!! QAQ

    很显然可以直接枚举一个质数然后然后想原来的题那样做,但是T*600000*n的复杂度肯定无法接受。

    ans = ∑(p为质数)∑(d) μ(d)*[n/pd]*[m/pd]

    容易想到像之前那样把n和m分块处理一下, 可以做到T*600000*sqrt(n), 但显然还是无法接受QAQ

    觉得p为质数这种东西放在外层循环肯定就必须枚举了, 但是如果放在内层可能有奇怪的事情发生?

    ans = ∑(d)∑(p为质数) μ(d)*[n/pd]*[m/pd]

    感觉很靠谱的样子!但是这里n除了除以一个p以外还除以了一个d, 让内层无法分块了, 所以考虑设一个数s = pd, 那么

    ans = ∑(s)[n/s][m/s]∑(p为质数)μ(s/p)

    随便算一算发现G(s) = ∑(p为质数)μ(s/p) 的这个函数是可以在线性筛的过程中算出来的!

    所以问题转换为 ans = ∑(s)[n/s][m/s]G(s), 随便分块做一下就可以啦!

     1 #include <iostream>
     2 #include <cstring>
     3 #include <cmath>
     4 #include <algorithm>
     5 #include <cstdio>
     6 #define MAXN 10000005
     7 using namespace std;
     8 int T, n, m;
     9 int prim[MAXN], pp, miu[MAXN];
    10 long long G[MAXN];
    11 bool isprim[MAXN];
    12 int main(){
    13     scanf("%d", &T);
    14     miu[1] = 1;
    15     for(int i = 2; i <= 10000000; i ++){
    16         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1, G[i] = 1;
    17         for(int j = 1; j <= pp && i * prim[j] <= 10000000; j ++){
    18             isprim[i*prim[j]] = 1;
    19             if(i%prim[j] == 0){G[i*prim[j]] = miu[i]; break;}
    20             miu[i*prim[j]] = -miu[i]; G[i*prim[j]] = miu[i]-G[i];
    21         }
    22     }
    23     for(int i = 2; i <= 10000000; i ++) G[i] += G[i-1];
    24     while(T --){
    25         scanf("%d%d", &n, &m);
    26         int now = 1, nn = n, mm = m, nen = n/nn, nem = m/mm; long long ans = 0;
    27         while(1){
    28             if(nen < nem){
    29                 ans += (G[nen]-G[now-1])*nn*mm;
    30                 now = nen+1; if(now > n) break;
    31                 nn = n/now;
    32                 nen = n/nn;
    33             }else{
    34                 ans += (G[nem]-G[now-1])*nn*mm;
    35                 if(nen == nem){
    36                     now = nen + 1; if(now > n) break;
    37                     nn = n/now;
    38                     nen = n/nn;
    39                 }
    40                 now = nem + 1; if(now > m) break;
    41                 mm = m/now;
    42                 nem = m/mm;
    43             }
    44         }
    45         printf("%lld
    ", ans);
    46     }
    47     return 0;
    48 }
    View Code

    [bzoj2705: [SDOI2012]Longge的问题]

    求 sigma(gcd(i,n), 1<=i<=n<2^32)

    很简单的题。ans = ∑(p|n) phi(n/p)*p

    显然无法线性筛预处理phi, 那么就用 phi(n) =  n * ∏((pi-1)/pi)这个式子, dfs一遍就好啦。

    对了这道题虽然它说 n <= 1<<32 但实际上没有n>=1<<31的情况诶!除了ans以外全部开int有机会从8ms降到4ms,,,,(好无聊

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cmath>
     4 #include <algorithm>
     5 #include <cstring>
     6 #define ll long long
     7 using namespace std;
     8 int m, N, bin[33], cbin[33], cnt;
     9 ll ans;
    10 void dfs(int x, int s, int phin){
    11     if(x == cnt+1){
    12         ans += phin*(m/s); return;
    13     }
    14     dfs(x+1, s, phin);
    15     s*=bin[x],phin*=(bin[x]-1);
    16     for(int i = 1; i <= cbin[x]; i ++){
    17         dfs(x+1, s, phin);
    18         s *= bin[x]; phin *= bin[x];
    19     }
    20 }
    21 int main(){
    22     cin >> N; m = N;
    23     for(int i = 2; i*i <= N; i ++)if(N%i==0){
    24         bin[++cnt] = i;
    25         while(N%i==0)cbin[cnt] ++, N/=i;
    26     }
    27     if(N)bin[++cnt]=N, cbin[cnt] = 1;
    28     dfs(1, 1, 1);
    29     printf("%lld
    ", ans);
    30     return 0;
    31 }
    View Code

    3529: [Sdoi2014]数表

    有一张N×m的数表,其第i行第j列(1 < =i < = n,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

    感觉这题挺神的。

    先不考虑a, 如何计算数表中所有数之和呢?

    设F(x) 为能整除x的所有自然数之和, 这个可以线性筛时胡乱搞搞算出来。

     ans = sigema{F(gcd(i,j)) }

    = sigema(p) { sigema(d){miu(d)*[n/dp]*[m/dp]} * F(p)}

    然后像bzoj2820: YY的GCD 那样, 试图把可以sqrt(n)计算的[n/dp]什么的挪到外层以降低复杂度

    [n/dp] 和[m/dp] 这两项以外包含了/p的, 只要乘上p以后就可以挪到外边了

    ans = sigema(p){ sigema(p|d){miu(d/p)*[n/d]*[m/d]} * F(p)}

    = sigema(d){ [n/d]*[m/d] * sigema(p|d){miu(d/p) * F(p)} }

    好啦!现在只需要能够预处理出来 G(x) = sigema(p|x){miu(x/p)*F(p)} 就可以分块前缀和啦!

    因为约数的期望是O(logn)的所以只要暴力一下就可以做到O(nlogn)的复杂度啦!

    现在考虑原问题。。。。。。。。。感觉a这个条件都要被遗忘了。

    如果F(x) > a的话, 直接让F(x) = 0 就可以了! 所以只要把询问离线, 按a排一个序, 再把F(x)排一个序, 一个一个加进去, 加的时候用树状数组维护前缀和就可以了!好机智啊!

    复杂度 O(nlog^2n + q*sqrt(n)*logn)

    话说我知道现在还会在取模意义下做减法的时候不再加上一个mod ,,,,,,被自己蠢哭啦QAQ

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cmath>
     4 #include <cstring>
     5 #include <algorithm>
     6 #define MAXN 100005
     7 #define lowbit(x) (x&(-x))
     8 using namespace std;
     9 int T, N, prim[MAXN], pp, isprim[MAXN], miu[MAXN], cm[MAXN], fs[MAXN], A[MAXN], ans[MAXN];
    10 inline void Add(int x, int c){
    11     for(; x <= N; x += lowbit(x)) A[x] += c;
    12 }
    13 inline int Sum(int x){
    14     int ret = 0;
    15     for(; x; x -= lowbit(x)) ret += A[x];
    16     return ret;
    17 }
    18 struct FF{int f, x;}F[MAXN];
    19 struct point{int n, m, a, num;}p[20005];
    20 bool cmp(point x, point y){return x.a < y.a;}
    21 bool cmpf(FF a, FF b){return a.f < b.f;}
    22 inline void Insert(int x, int c){
    23     for(int i = 1; i*x <= N; i ++) Add(i*x, c*miu[i]);
    24 }
    25 int calc(int a, int b){
    26     int now = 1, aa = a, bb = b, na = 1, nb = 1, ans = 0, pre = 0, la;
    27         while(1){
    28             if(na < nb){
    29                 la = Sum(na);
    30                 ans += (la-pre) * aa * bb;
    31                 pre = la;
    32                 now = na+1; if(now > a) break;
    33                 aa = a/now;
    34                 na = a/aa;
    35             }else{
    36                 la = Sum(nb);
    37                 ans += (la-pre) * aa * bb;
    38                 pre = la;
    39                 if(na == nb){
    40                     now = na+1; if(now > a) break;
    41                     aa = a/now;
    42                     na = a/aa;        
    43                 }
    44                 now = nb+1; if(now > b) break;
    45                 bb = b/now;
    46                 nb = b/bb;
    47             }
    48         }
    49     return ans;
    50 }
    51 int main(){
    52     scanf("%d", &T);
    53     miu[1] = F[1].f = F[1].x = 1;
    54     for(int i = 2; i <= 100000; i ++){
    55         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1, F[i].f = i+1, cm[i] = i, fs[i] = 1;
    56         for(int j = 1; j <= pp && i*prim[j] <= 100000; j ++){
    57             isprim[i*prim[j]] = 1;
    58             if(i%prim[j] == 0){
    59                 miu[i*prim[j]] = 0;
    60                 F[i*prim[j]].f = F[i].f + fs[i]*cm[i]*prim[j];
    61                 cm[i*prim[j]] = cm[i]*prim[j];
    62                 fs[i*prim[j]] = fs[i];
    63                 break;
    64             }
    65             miu[i*prim[j]] = -miu[i];
    66             F[i*prim[j]].f = F[i].f*(1+prim[j]);
    67             cm[i*prim[j]] = prim[j], fs[i*prim[j]] = F[i].f;
    68         }
    69         F[i].x = i;
    70     }
    71     for(int i = 1; i <= T; i ++) scanf("%d%d%d", &p[i].n, &p[i].m, &p[i].a), p[i].num = i, N = max(N, max(p[i].n,p[i].m));
    72     sort(p + 1, p + T + 1, cmp);
    73     sort(F + 1, F + 100000+1, cmpf);
    74     int jj = 1;
    75     for(int i = 1; i <= T; i ++){
    76         while(jj <= 100000 && F[jj].f <= p[i].a){Insert(F[jj].x, F[jj].f); jj ++;}
    77         ans[p[i].num] = calc(p[i].n, p[i].m)&((1<<31)-1);
    78     }
    79     for(int i = 1; i <= T; i ++) printf("%d
    ", ans[i]);
    80     return 0;
    81 }
    View Code

    BZOJ 2154 Crash的数字表格

    求Σ[1<=i<=n]Σ[1<=j<=m]LCM(i,j) mod 20101009

    这题没什么技巧,直接倒一下就可以了。

    ans = sigema(p) {i*j/p ((i,j)=p) }

    设S(x) = x*(x-1)/2 

    ans = sigema(p) { sigema(d){miu(d)*S(n/pd)*S(m/pd)*d2}*p }

    然后分块套分块做一遍就好了 O(sqrt(n)*sqrt(n)) = O(n)

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #define ll long long
     7 #define mod 20101009
     8 #define MAXN 10000005
     9 using namespace std;
    10 int N, n, m, prim[MAXN], isprim[MAXN], pp;
    11 ll sum[MAXN], miu[MAXN];
    12 ll SS(ll x, ll y){
    13     return (((x*(x+1)/2)%mod) * ((y*(y+1)/2)%mod) )%mod;
    14 }
    15 ll F(int a, int b){
    16     int now = 1, aa = a, bb = b, na = 1, nb = 1;
    17     ll ans = 0;
    18     while(1){
    19         if(na < nb){
    20             (ans += SS(a/now, b/now) * ((miu[na]-miu[now-1]+mod)%mod) %mod )%=mod;
    21             now = na+1; if(now > a) break;
    22             aa = a/now;
    23             na = a/aa;
    24         }else{
    25             (ans += SS(a/now, b/now) * ((miu[nb]-miu[now-1]+mod)%mod) %mod ) %= mod;
    26             if(na == nb){
    27                 now = na+1; if(now > a) break;
    28                 aa = a/now;
    29                 na = a/aa;        
    30             }
    31             now = nb+1; if(now > b) break;
    32             bb = b/now;
    33             nb = b/bb;
    34         }
    35     }
    36     return ans;
    37 }
    38 ll calc(int a, int b){
    39     int now = 1, aa = a, bb = b, na = 1, nb = 1;
    40     ll ans = 0;
    41     while(1){
    42         if(na < nb){
    43             (ans += F(a/now, b/now) * ((sum[na]-sum[now-1]+mod)%mod) %mod ) %=mod;
    44             now = na+1; if(now > a) break;
    45             aa = a/now;
    46             na = a/aa;
    47         }else{
    48             (ans += F(a/now, b/now) * ((sum[nb]-sum[now-1]+mod)%mod) %mod )%=mod;
    49             if(na == nb){
    50                 now = na+1; if(now > a) break;
    51                 aa = a/now;
    52                 na = a/aa;        
    53             }
    54             now = nb+1; if(now > b) break;
    55             bb = b/now;
    56             nb = b/bb;
    57         }
    58     }
    59     return ans;
    60 }
    61 int main(){
    62     scanf("%d%d", &n, &m); N = min(n, m);
    63     miu[1] = 1;
    64     for(int i = 2; i <= N; i ++){
    65         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1;
    66         for(int j = 1; j <= pp && i*prim[j]<=N; j ++){
    67             isprim[i*prim[j]] = 1;
    68             if(i%prim[j] == 0) break;
    69             miu[i*prim[j]] = -miu[i];
    70         }
    71     }
    72     for(int i = 1; i <= N; i ++) sum[i] = (sum[i-1]+i)%mod, miu[i] = (miu[i-1]+miu[i]*i*i)%mod;
    73     cout << calc(n, m)<<endl;
    74     return 0;
    75 }
    View Code

    2693: jzptab

    上一题的加强版, 1000组数据。

    又是这样!窝打了很多东西后电脑崩了都没存下来QAQ

    思路不难,考虑把上一题的那个式子继续化简, 像以前的方法一样通过把里面的那个多项式都乘上一个p或是用换元把pd换成S(其实这两种方法本质上是一样的), 然后就可以成功地把[n/p]这个非常棒的可以sqrt(n)搞出来的东西放到外层多项式了,现在只要考虑如何O(n)地预处理出内层多项式。 

    G(d) = sigema(i|d) {d/i * i2 * μ(i)} = d* sigema(i|d) {d*μ(d)}

    用莫比乌斯反演推一下容易得出积性函数的因数和也是积性函数, 所以G(d)是积性函数, 线性筛一遍随便搞一搞就可以了

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath> 
     5 #include <algorithm>
     6 #define mod 100000009
     7 #define MAXN 10000005
     8 #define ll long long
     9 using namespace std;
    10 int T, N, M, prim[MAXN], pp, miu[MAXN], isprim[MAXN];
    11 ll G[MAXN];
    12 ll SS(ll a, ll b){return (((a*(a+1)/2)%mod)*((b*(b+1)/2)%mod))%mod;}
    13 int calc(int a, int b){
    14     int now = 1, aa = a, bb = b, na = 1, nb = 1, ans = 0;
    15         while(1){
    16             if(na < nb){
    17                 (ans += ((G[na]-G[now-1]) * SS(aa, bb))%mod)%=mod;
    18                 now = na+1; if(now > a) break;
    19                 aa = a/now;
    20                 na = a/aa;
    21             }else{
    22                 (ans += ((G[nb]-G[now-1]) * SS(aa, bb))%mod)%=mod;
    23                 if(na == nb){
    24                     now = na+1; if(now > a) break;
    25                     aa = a/now;
    26                     na = a/aa;        
    27                 }
    28                 now = nb+1; if(now > b) break;
    29                 bb = b/now;
    30                 nb = b/bb;
    31             }
    32         }
    33     return ans;
    34 }
    35 int main(){
    36     miu[1] = 1; G[1] = 1;
    37     for(int i = 2; i <= 10000000; i ++){
    38         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1, G[i] = (1-i+mod)%mod;
    39         for(int j = 1; j <= pp && i*prim[j] <= 10000000; j ++){
    40             isprim[i*prim[j]] = 1;
    41             if(i%prim[j] == 0){
    42                 G[i*prim[j]] = G[i]; break;
    43             }
    44             miu[i*prim[j]] = -miu[i];
    45             G[i*prim[j]] = (G[i]*G[prim[j]])%mod;
    46         }
    47     }
    48     for(int i = 1; i <= 10000000; i ++) G[i] = (G[i-1] + G[i]*i)%mod;
    49     scanf("%d", &T);
    50     while(T--){
    51         int a, b; scanf("%d%d", &a, &b);
    52         printf("%d
    ", (calc(a, b)+mod)%mod);
    53     }
    54     return 0;
    55 }
    View Code

    总结

    上面的这些题其实都是一个问题换一下形式而已,可以起名叫做“gcd计数问题”?无非是看到要求一个gcd相关的东西, 然后不好做, 所以要莫比乌斯反演一下把(x,y)=d转化为(d|x 且 d|y), 这就是一个直接用除法取整可以解决的问题了,而除法取整有一个非常好的性质就是不同的 f(x) = x/i 的数量是 sqrt(x)级别的, 如果可以把他提出来且把它里面的东西的前缀和预处理出来就可以O(sqrt(n))地解决这个问题。有的时候 [x/ij] 被套在了内层于是只能O(sqrt(n))地算出内层部分, 不能接受, 于是就要想办法把[x/ij]换到外层, 内层整体乘上j就可以了,然后再考虑如何O(n)地计算被换到内层的部分的前缀和就可以了。

  • 相关阅读:
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    C# List分组
    Win7安装VS2019
    C# Lambda Left Join AND Group by Then Sum
    RSA加密解密,Base64String
    Ion-select and ion-option list styling 自定义样式
    Docker镜像
  • 原文地址:https://www.cnblogs.com/lixintong911/p/5129076.html
Copyright © 2011-2022 走看看