zoukankan      html  css  js  c++  java
  • Chap2: question: 1

    1. 赋值运算符函数(或应说复制拷贝函数问题

    class A
    {
    private:
    	int value;
    public:
    	A(int n) : value(n) {}
    	A(A O) { value = O.value; } // Compile Error : (const A& O)
    };
    

    因为,A a(0); A b = a; 就会使程序陷入死循环。

    2. 实现 Singleton 模式 (C#)

     (博客待加设计模式总结)

    3.二维数组中的查找

    Sample:

    二维数组:Matrix[4][4],行列都是递增。

    1   2   8   9

    2   4   9  12

    4   7   10   13

    6   8   11   15

    判断 value = 7 是否在数组。

    思路:从右上角开始,若大于 7 删去一列; 若小于 7 删去一行。

    代码:

    #include<iostream>
    const int N = 4;
    int data[][N] = {{1, 2, 8, 9},{ 2, 4, 9, 12},{4, 7, 10, 13}, {6, 8, 11, 15}};
    
    bool find(int (*matrix)[N], int row, int column, int value)
    {
        int r  = 0, c = column - 1;
        while(r < row && c >= 0)
        {
            if(matrix[r][c] == value) return true;
            if(matrix[r][c] > value) --c;
            else ++r;
        }
        return false;
    }
    
    int main()
    {
        std::cout << find(data, 4, 4, 10) << std::endl;
        return 0;
    }
    View Code

    4.替换空格  时间:O(n) 空间:O(1)

     Sample:

    输入:  S:"We are happy."

    输出:S:"We%20are%20happy."

     1 #include<stdio.h>
     2 #include<string.h>
     3 const int N = 18;
     4 /* length  is the full capacity of the string, max number of elements is length-1*/
     5 void ReplaceBank(char s[], int length){
     6     if(s == NULL && length <= 0) return; // program robustness 
     7     int nowLength = -1, numberOfBlank = 0;
     8     while(s[++nowLength] != ''){
     9         if(s[nowLength] == ' ') ++numberOfBlank;
    10     }
    11     int newLength = nowLength + numberOfBlank * 2;  // newLength is the number of elements 
    12     if(newLength >= length) return;
    13     
    14     int idOfNow = nowLength, idOfNew = newLength; // both point to '/0' 
    15     while(idOfNow >= 0){      /* key program */
    16         if(s[idOfNow] == ' ') {
    17             strncpy(s+idOfNew-2, "%20", 3);
    18             idOfNew -= 3;
    19             --idOfNow; 
    20         }else
    21             s[idOfNew--] = s[idOfNow--];
    22     }
    23 }
    24 
    25 int main(){
    26     char s[N] = "We are happy.";
    27     puts(s);
    28     ReplaceBank(s,N);
    29     puts(s);
    30     return 0;
    31 }
    Code

     5.从尾到头打印链表

     1. 询问是否可以改变链表结构,若可以,则空间O(1);否则,

     2. 使用栈,或者递归。

      a. 使用栈:

     1 #include <iostream>
     2 #include <string>
     3 #include <stack>
     4 
     5 struct LinkNode{
     6     char e;
     7     LinkNode *next;
     8 };
     9 
    10 void print(LinkNode *Head)
    11 {
    12     std::stack<char> st;
    13     while(Head != NULL)
    14     {
    15         st.push(Head->e);
    16         Head = Head->next;
    17     }
    18     while(!st.empty())
    19     {
    20         printf("%c ", st.top());
    21         st.pop();
    22     }
    23     printf("
    ");
    24 }
    25 
    26 LinkNode* init(const std::string &s)
    27 {
    28     size_t i = 0;
    29     LinkNode *head, *p;
    30     p = head = NULL;
    31     while(i < s.length())
    32     {
    33         LinkNode *p2 = new LinkNode;
    34         p2->e = s[i++]; p2->next = NULL;
    35         if(head == NULL)
    36             head = p = p2;
    37         else
    38         {
    39             p->next = p2;
    40             p = p->next;
    41         }
    42     }
    43     return head;
    44 }
    45 void release(LinkNode *Head){
    46     if(Head == NULL) return;
    47     release(Head->next);
    48     delete[] Head;
    49     Head = NULL;
    50 }
    51 int main()
    52 {
    53     const std::string s = "ABCDEFG";
    54     LinkNode *Head = init(s);
    55     print(Head);
    56     release(Head);
    57     return 0;
    58 }
    Code

      b. 使用递归:

    void RecursivePrint(LinkNode *Head)
    {
        if(Head == NULL) return;
        RecursivePrint(Head->next);
        printf("%c ", Head->e);
    }
    

     6. 重建二叉树

      a. 前序 && 中序  

     1 #include <cstdio>
     2 #include <queue>
     3 struct BTNode{
     4     int value;
     5     BTNode *pLeft;
     6     BTNode *pRight;
     7     BTNode(int x) : value(x), pLeft(NULL), pRight(NULL) {}
     8 };
     9 
    10 BTNode* constructCore(int *startPreOrder, int *endPreOrder, int *startInOrder, int *endInOrder)
    11 {
    12     int rootValue = startPreOrder[0];
    13     BTNode *root = new BTNode(rootValue);
    14     int *rootInOrder = startInOrder;
    15     while(*rootInOrder != rootValue && rootInOrder <= endInOrder) ++rootInOrder;
    16     if(*rootInOrder != rootValue) { printf("Invalid Input!"); return NULL; }
    17 
    18     int leftLength = rootInOrder - startInOrder;
    19     if(leftLength > 0)
    20     {
    21         root->pLeft = constructCore(startPreOrder + 1, startPreOrder + leftLength,
    22             startInOrder, startInOrder + leftLength - 1);
    23     }
    24     if(rootInOrder != endInOrder)
    25     {
    26         root->pRight = constructCore(startPreOrder + leftLength + 1, endPreOrder,
    27             rootInOrder + 1, endInOrder);
    28     }
    29     return root;
    30 }
    31 
    32 BTNode* construct(int *preOrder, int *inOrder, int length)
    33 {
    34     if(preOrder == NULL || inOrder == NULL || length <= 0) 
    35         return NULL;
    36     return constructCore(preOrder, preOrder + length - 1, inOrder, inOrder + length -1);
    37 }
    38 void print(BTNode *root)
    39 {
    40     if(root == NULL) return;
    41 
    42     std::queue<BTNode*> qu;
    43     qu.push(root);
    44     while(!qu.empty())
    45     {
    46         BTNode *p = qu.front();
    47         qu.pop();
    48         if(p->pLeft) qu.push(p->pLeft);
    49         if(p->pRight) qu.push(p->pRight);
    50         printf("%d ", p->value);
    51     }
    52 }
    53 void release(BTNode *root)
    54 {
    55     if(root == NULL) return;
    56     release(root->pLeft);
    57     release(root->pRight);
    58     delete[] root;
    59     root = NULL;
    60 }
    61 
    62 int main()
    63 {
    64     int preOrder[] = {1, 2, 4, 7, 3, 5, 6, 8};
    65     int inOrder[] = {4, 7, 2, 1, 5, 3, 8, 6};
    66     BTNode *root = construct(preOrder, inOrder, 8);
    67     print(root);
    68     release(root);
    69     return 0;
    70 }
    Code

        二叉树的各种遍历:

      1 #include <cstdio>
      2 #include <queue>
      3 #include <stack>
      4 struct BTNode{
      5     int value;
      6     BTNode *pLeft;
      7     BTNode *pRight;
      8     BTNode(int x) : value(x), pLeft(NULL), pRight(NULL) {}
      9 };
     10 
     11 BTNode* constructCore(int *startPreOrder, int *endPreOrder, int *startInOrder, int *endInOrder)
     12 {
     13     int rootValue = startPreOrder[0];
     14     BTNode *root = new BTNode(rootValue);
     15     int *rootInOrder = startInOrder;
     16     while(*rootInOrder != rootValue && rootInOrder <= endInOrder) ++rootInOrder;
     17     if(*rootInOrder != rootValue) { printf("Invalid Input!
    "); return NULL; }
     18 
     19     int leftLength = rootInOrder - startInOrder;
     20     if(leftLength > 0)
     21     {
     22         root->pLeft = constructCore(startPreOrder + 1, startPreOrder + leftLength,
     23             startInOrder, startInOrder + leftLength - 1);
     24     }
     25     if(rootInOrder != endInOrder)
     26     {
     27         root->pRight = constructCore(startPreOrder + leftLength + 1, endPreOrder,
     28             rootInOrder + 1, endInOrder);
     29     }
     30     return root;
     31 }
     32 
     33 BTNode* construct(int *preOrder, int *inOrder, int length)
     34 {
     35     if(preOrder == NULL || inOrder == NULL || length <= 0) 
     36         return NULL;
     37     return constructCore(preOrder, preOrder + length - 1, inOrder, inOrder + length -1);
     38 }
     39 void levelOrderPrint(BTNode *root) 
     40 {
     41     if(root == NULL) return;
     42     printf("BFS:");
     43     std::queue<BTNode*> qu;
     44     qu.push(root);
     45     while(!qu.empty())
     46     {
     47         BTNode *p = qu.front();
     48         qu.pop();
     49         if(p->pLeft) qu.push(p->pLeft);
     50         if(p->pRight) qu.push(p->pRight);
     51         printf("%-3d ", p->value);
     52     }
     53     printf("
    ");
     54 }
     55 void preORderPrint2(BTNode *root) // preORder
     56 {
     57     if(root == NULL) return;
     58     printf("DLR: ");
     59     std::stack<BTNode*> st;
     60     st.push(root);
     61     while(!st.empty())
     62     {
     63         BTNode *p = st.top();
     64         st.pop();
     65         if(p->pRight) st.push(p->pRight);
     66         if(p->pLeft) st.push(p->pLeft);
     67         printf("%-3d ", p->value);
     68     }
     69     printf("
    ");
     70 }
     71 void inOrderPrint3(BTNode *root) // inOrder
     72 {
     73     if(root == NULL) return;
     74     printf("LDR: ");
     75     std::stack<BTNode*> st;
     76     st.push(root);
     77     BTNode *p = root;
     78     while(p->pLeft) 
     79     {
     80         st.push(p->pLeft);
     81         p = p->pLeft;
     82     }
     83     while(!st.empty())
     84     {
     85         p = st.top();
     86         st.pop();
     87         if(p->pRight) 
     88         {
     89             BTNode *q = p->pRight;
     90             st.push(q);
     91             while(q->pLeft) { st.push(q->pLeft); q = q->pLeft; }
     92         }
     93         printf("%-3d ", p->value);
     94     }
     95     printf("
    ");
     96 }
     97 void postOrderPrint4(BTNode *root) // postOrder
     98 {
     99     if(root == NULL) return;
    100     printf("LRD: ");
    101     std::stack<BTNode*>st;
    102     st.push(root);
    103     BTNode *p = root;
    104     while(p->pLeft || p->pRight)
    105     {
    106         while(p->pLeft) { st.push(p->pLeft); p = p->pLeft; }
    107         if(p->pRight) { st.push(p->pRight); p = p->pRight; }
    108     }
    109     //bool tag = true;
    110     while(!st.empty())
    111     {
    112         BTNode *q = st.top();
    113         st.pop();
    114         if(!st.empty())
    115         {
    116             p = st.top();
    117             if(p->pRight && p->pRight != q) 
    118             { 
    119                 st.push(p->pRight); p = p->pRight; 
    120                 while(p->pLeft || p->pRight)
    121                 {
    122                     while(p->pLeft) { st.push(p->pLeft); p = p->pLeft; }
    123                     if(p->pRight) { st.push(p->pRight); p = p->pRight; }
    124                 }
    125             }
    126         }
    127         printf("%-3d ", q->value);
    128     }
    129     printf("
    ");
    130 }
    131 void DFSPrint(BTNode *root,const int nVertex)
    132 {
    133     if(root == NULL) return;
    134     printf("DFS: ");
    135     bool *visit = new bool[nVertex];
    136     memset(visit, false, nVertex);
    137     std::stack<BTNode*> st;
    138     st.push(root);
    139     visit[root->value] = true;
    140     while(!st.empty())
    141     {
    142         BTNode *p = st.top();
    143         st.pop();
    144         if(p->pRight && !visit[p->pRight->value]) { st.push(p->pRight); visit[p->pRight->value] = true; }
    145         if(p->pLeft && !visit[p->pLeft->value]) { st.push(p->pLeft); visit[p->pLeft->value];}
    146         printf("%-3d ", p->value);
    147     }
    148     printf("
    ");
    149 }
    150 void release(BTNode *root)
    151 {
    152     if(root == NULL) return;
    153     release(root->pLeft);
    154     release(root->pRight);
    155     delete[] root;
    156     root = NULL;
    157 }
    158 
    159 int main()
    160 {
    161     int preOrder[] = {1, 2, 4, 8, 9, 5, 10, 11, 3, 6, 12, 13, 7, 14, 15};
    162     int inOrder[] = {8, 4, 9, 2, 10, 5, 10, 1, 12, 6, 13, 3, 14, 7, 15};
    163     BTNode *root = construct(preOrder, inOrder, 15);
    164     levelOrderPrint(root);
    165     preORderPrint2(root);
    166     inOrderPrint3(root);
    167     postOrderPrint4(root);
    168     DFSPrint(root, 15+1);
    169     release(root);
    170     return 0;
    171 }
    Code

     7.用两个栈实现队列

     1 #include <cstdio>
     2 #include <stack>
     3 #include <exception>
     4 template<typename T> class CQueue
     5 {
     6 public:
     7     void appendTail(T x);
     8     T deleteHead();
     9 private:
    10     std::stack<T> st1;
    11     std::stack<T> st2;
    12 };
    13 template<typename T>void CQueue<T>::appendTail(T x)
    14 {
    15     st1.push(x);
    16 }
    17 template<typename T>T CQueue<T>::deleteHead()
    18 {
    19     if(st2.empty())
    20     {
    21         if(st1.empty()) throw new std::exception("queue is empty!");
    22         while(!st1.empty())
    23         {
    24             st2.push(st1.top());
    25             st1.pop();
    26         }
    27     }
    28     T v = st2.top();
    29     st2.pop();
    30     return v;
    31 }
    32 
    33 int main()
    34 {
    35     printf("Test int:
    ");
    36     CQueue<int> qu;
    37     qu.appendTail(10);
    38     qu.appendTail(2);
    39     printf("%d
    ",qu.deleteHead());
    40     printf("%d
    ",qu.deleteHead());
    41 
    42     printf("Test char*:
    ");
    43     CQueue<char*> qu2;
    44     qu2.appendTail("Hello");
    45     qu2.appendTail("World!");
    46     printf("%s
    ",qu2.deleteHead());
    47     printf("%s
    ",qu2.deleteHead());
    48     //printf("%s
    ",qu2.deleteHead());
    49     return 0;
    50 }
    Code

     8.旋转数组的最小数字

     1 #include <iostream>
     2 using namespace std;
     3 
     4 int MinInorder(int *numbers, int low, int high)
     5 {
     6     int minNum = numbers[low];
     7     while(++low <= high)
     8     {
     9         if(numbers[low] < minNum) 
    10             minNum = numbers[low];
    11     }
    12     return minNum;
    13 }
    14 
    15 int Min(int *numbers, int length)
    16 {
    17     if(numbers == NULL || length <= 0) throw new exception("Invalid parameters!");
    18     int low = 0, high = length - 1;
    19     int mid = low;   // note
    20     while(numbers[low] >= numbers[high]) // note >= 
    21     {
    22         if(high - low == 1)
    23         {
    24             mid = high;
    25             break;
    26         }
    27         mid = (low + high) >> 1;
    28         if(numbers[mid] == numbers[low] && numbers[mid] == numbers[high]) return MinInorder(numbers, low, high);
    29         else if(numbers[mid] >= numbers[low]) low = mid;
    30         else if(numbers[mid] <= numbers[high]) high = mid;
    31     }
    32     return numbers[mid];
    33 }
    34 
    35 int main()
    36 {
    37     int test1[] = {4, 5, 1, 2, 3};
    38     cout << "Test1: " << Min(test1, sizeof(test1)/4) << endl;
    39 
    40     int test2[] = {1, 1, 1, 0, 1};
    41     cout << "Test2: " << Min(test2, sizeof(test2)/4) << endl;
    42 
    43     return 0;
    44 }
    Code

    9.斐波那契数列第 n 项

      a. 动态规划(从低到高保存结果)

    int Fibonacci1(unsigned long long N)
    {
    	long long fibN;
    	long long a[] = {0, 1};
    	if(N < 2) return a[N];
    	while(N >= 2)
    	{
    		fibN = (a[0] + a[1]) % M;
    		a[0] = a[1];
    		a[1] = fibN;
    		--N;
    	}
    	return (int)fibN;
    }
    

     b1.矩阵二分乘(递归)

    const int M = 1e+9 +7 ; 
    struct Matrix{
    	long long e[2][2];
    };
    Matrix Mat;
    
    Matrix multiplyMatrix(Matrix &A, Matrix &B)
    {
    	Matrix C;
    	for(int i = 0; i < 2; ++i){
    		for(int j = 0; j < 2; ++j){
    			C.e[i][j] = ((A.e[i][0] * B.e[0][j]) % M + (A.e[i][1] * B.e[1][j]) % M) % M;
    		}
    	}
    	return C;
    }
    Matrix getMatrix(long long n)
    {
    	if(n == 1) return Mat;
    	Matrix tem = getMatrix(n>>1);
    	tem = multiplyMatrix(tem,tem);
    	if((n & 0x1) == 0) return tem;
    	else 
    		return multiplyMatrix(Mat,tem);
    }
    
    int Fibonacci2(long long N)
    {
    	if(N == 0) return 0;
    	if(N == 1) return 1;
    	Mat.e[0][0] = 1; Mat.e[0][1] = 1;
    	Mat.e[1][0] = 1; Mat.e[1][1] = 0;
    	Matrix result = getMatrix(N-1);
    	return (int)result.e[0][0];
    }
    

    b2.  矩阵二分乘(非递归)

    const int M = 1000000007; 
    struct Matrix{
    	long long e[2][2];
    };
    Matrix Mat;
    
    Matrix multiplyMatrix(Matrix &A, Matrix &B)
    {
    	Matrix C;
    	for(int i = 0; i < 2; ++i){
    		for(int j = 0; j < 2; ++j){
    			C.e[i][j] = ((A.e[i][0] * B.e[0][j]) % M + (A.e[i][1] * B.e[1][j]) % M) % M;
    		}
    	}
    	return C;
    }
    Matrix getMatrix(Matrix base, long long N)
    {
    	Matrix T;                   // set one unit matrix
    	T.e[0][0] = T.e[1][1] = 1;
    	T.e[0][1] = T.e[1][0] = 0;
    	while(N - 1 != 0)
    	{
    		if(N & 0x1) T = multiplyMatrix(T, base);
    		base = multiplyMatrix(base, base);
    		N >>= 1;
    	}
    	return multiplyMatrix(T, base);
    }
    
    int Fibonacci2(long long N)
    {
    	if(N == 0) return 0;
    	if(N == 1) return 1;
    	Mat.e[0][0] = 1; Mat.e[0][1] = 1;
    	Mat.e[1][0] = 1; Mat.e[1][1] = 0;
    	Matrix result = getMatrix(Mat, N-1);
    	return (int)result.e[0][0];
    }
    

     两种方法效率的比较:

     1 #include <iostream>
     2 #include <ctime>
     3 using namespace std;
     4 const int M = 1000000007; 
     5 struct Matrix{
     6     long long e[2][2];
     7 };
     8 Matrix Mat;
     9 
    10 Matrix multiplyMatrix(Matrix &A, Matrix &B)
    11 {
    12     Matrix C;
    13     for(int i = 0; i < 2; ++i){
    14         for(int j = 0; j < 2; ++j){
    15             C.e[i][j] = ((A.e[i][0] * B.e[0][j]) % M + (A.e[i][1] * B.e[1][j]) % M) % M;
    16         }
    17     }
    18     return C;
    19 }
    20 Matrix getMatrix(Matrix base, long long N)
    21 {
    22     Matrix T;                   // set one unit matrix
    23     T.e[0][0] = T.e[1][1] = 1;
    24     T.e[0][1] = T.e[1][0] = 0;
    25     while(N - 1 != 0)
    26     {
    27         if(N & 0x1) T = multiplyMatrix(T, base);
    28         base = multiplyMatrix(base, base);
    29         N >>= 1;
    30     }
    31     return multiplyMatrix(T, base);
    32 }
    33 
    34 int Fibonacci2(long long N)
    35 {
    36     if(N == 0) return 0;
    37     if(N == 1) return 1;
    38     Mat.e[0][0] = 1; Mat.e[0][1] = 1;
    39     Mat.e[1][0] = 1; Mat.e[1][1] = 0;
    40     Matrix result = getMatrix(Mat, N-1);
    41     return (int)result.e[0][0];
    42 }
    43 
    44 int Fibonacci1(long long N)
    45 {
    46     long long fibN;
    47     long long a[] = {0, 1};
    48     if(N < 2) return (int)a[N];
    49     while(N >= 2)
    50     {
    51         fibN = (a[0] + a[1]) % M;
    52         a[0] = a[1];
    53         a[1] = fibN;
    54         --N;
    55     }
    56     return (int)fibN;
    57 }
    58 
    59 int main()
    60 {
    61     unsigned long long N;
    62     while(cin >> N)
    63     {
    64         /* method 1: DP  */
    65         clock_t start = clock();
    66         int fibN = Fibonacci1(N);
    67         clock_t end = clock();
    68         cout << "method1:" << fibN << " time: " << end-start << "ms" << endl;
    69         /* method 2   */
    70         start = clock();
    71         fibN = Fibonacci2(N);
    72         end = clock();
    73         cout << "method2:" << fibN << " time: " << end-start << "ms" << endl;
    74     }
    75     return 0;
    76 }
    Code

    10.一个整数的二进制表示中 1 的个数。(包含正负数)

       需要注意的是:—1 >> (任意位)  == —1; 负数 >> +∞ == —1。 ((—1)10 == (0xffffffff)16  )

      a. 利用辅助变量,每次判断 n 的一位。

     1 int numberOf1(int n)
     2 {
     3     int count = 0;
     4     int flag = 1;
     5     while(flag)
     6     {
     7         if(n & flag) count ++;
     8         flag <<= 1;
     9     }
    10     return count;
    11 }
    Code

     b. 利用 n 的性质。

     1 #include <iostream>
     2 int numberOf1(int n){
     3     int count = 0;
     4     while(n){
     5         count ++;
     6         n &= (n-1);
     7     }
     8     return count;
     9 }
    10 int main(){
    11     int N;
    12     while(std::cin >> N){
    13         std::cout << "has 1: " << numberOf1(N) << std::endl;
    14     }
    15     return 0;
    16 }
    Code

  • 相关阅读:
    Django-01
    tkinter模块常用参数(python3)
    Python3 数据可视化之matplotlib、Pygal、requests
    python面试题(二)
    python 面试题(一)
    Python 用Redis简单实现分布式爬虫
    用python的正则表达式实现简单的计算器功能
    Python操作 RabbitMQ、Redis、Memcache
    自定义线程池
    21天学通Python课后实验题4.6
  • 原文地址:https://www.cnblogs.com/liyangguang1988/p/3667443.html
Copyright © 2011-2022 走看看