zoukankan      html  css  js  c++  java
  • 27. Best Time to Buy and Sell Stock && Best Time to Buy and Sell Stock II && Best Time to Buy and Sell Stock III

     

    Best Time to Buy and Sell Stock 

    (onlineJudge: https://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock/

    Say you have an array for which the ith element is the price of a given stock on day i.

    If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

    注意: 限制条件: 先买后卖(不同天)。

    思想: 买了后,1. 若以后价格不变,不买不卖。 1. 更价格低,重新买。2. 价格升高,假定抛售,更新一下利润值。

    class Solution {
    public:
        int maxProfit(vector<int> &prices) {
            int buy = 0x7fffffff, maxProfile = 0;
            for(int i = 0; i < prices.size(); ++i) {
                if(prices[i] == buy) continue;
                if(prices[i] < buy) { buy = prices[i]; continue; }
                else maxProfile = max(maxProfile, prices[i]-buy);
            }
            return maxProfile;
        }
    };
    

    Best Time to Buy and Sell Stock II

     (onlineJudge: https://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-ii/

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

    思想:求出所有非递减序列两端绝对值之和。我贴在 leedcode 的代码和证明:

    class Solution {
    public:
        int maxProfit(vector<int> &prices) {
            int n = prices.size();
            if(n == 0) return 0;
            int start = 0, profile = 0;
            for(int i = 1; i < n; ++i) {
                if(prices[i] < prices[i-1]) {
                    profile += prices[i-1] - prices[start];
                    start = i;
                }
            }
            profile += prices[n-1] - prices[start];
            return profile;
        }
    };
    /*********************** *provement ***************/
    /*Explain the code I pasted above: 
    
    From left to right I find out every subsequence that not exist decrease. 
    
    such as: l ... k1 ...k2 ... h (l <=...<= k1 <= ... k2 <= ... <= h)
    
    In this sequence: ( k1-l ) + ( h-k2 ) = ( h-l ) - ( k2-k1 ) <= ( h-l ); 
    
    So (h - l) will be the maximum profit in this days.
    
    Another case:
    
    L1 ...d1... H1 K2 ...k... K3 L2 ...d2... H2 (L1 <=... H1 > K2 >=...k >=... K3 > L2 <=... H2 )
    
    K2 ... K3 is not exist increase sequence.
    
    then for any k in that position,
    
    ( k-d1 ) + ( d2-k ) <= ( K2-L1 ) + ( H2-K3 ) < ( H1-L1 ) + ( H2-L2 ) 
    
    In my code, variant "start" is the start of every no decrease sequence.*/
    

     A little Adjustment.

    class Solution {
    public:
        int maxProfit(vector<int> &prices) {
            int start = 0, profile = 0;
            for(size_t i = start+1; i < prices.size(); ++i) {
                if(prices[i] < prices[i-1]) {
                    profile += prices[i-1] - prices[start];
                    start = i;
                }
                else if(i+1 == prices.size()) 
                    profile += prices[i] - prices[start];
            }
            return profile;
        }
    };
    

    Best Time to Buy and Sell Stock III

     (onlineJudge: https://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most two transactions.

    Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

     思想:动态规划。 记录下从各位置(含)开始之前的最大利润和此时开始到最后的最大利润。

    class Solution {
    public:
        int maxProfit(vector<int> &prices) {
            vector<int> preProfile(prices.size()+2, 0), postProfile(prices.size()+2, 0);
            
            int minPrice = 0x7fffffff;
            for(size_t i = 1; i <= prices.size(); ++i) {
                minPrice = min(minPrice, prices[i-1]);
                preProfile[i] = max(prices[i-1] - minPrice, preProfile[i-1]);
            }
            
            int maxPrice = 0;
            for(int i = prices.size(); i >= 1; --i) {
                maxPrice = max(maxPrice, prices[i-1]);
                postProfile[i] = max(maxPrice - prices[i-1], postProfile[i+1]);
            }
            
            int maxProfile = 0;
            for(size_t i = 1; i <= prices.size(); ++i) 
                maxProfile = max(maxProfile, preProfile[i] + postProfile[i]);
            return maxProfile;
        }
    };
    
  • 相关阅读:
    H50062:meta 定义浏览器的渲染方式
    PHPJN0004:PHP文件上传被安全狗拦截处理
    APP0006- 提示弹窗
    MySQL0002:命令行操作数据库常用命令
    APP0005- data属性的定义
    CSS0018: 字体超长自动隐藏
    JS_0041:JS加载JS文件 异步同步加载js文件
    CSS0017: DIV 上下左右都居中样式
    CSS0016: 多个DIV并排均匀分布 box-sizing
    H50061:html 中引入外部 html 片段
  • 原文地址:https://www.cnblogs.com/liyangguang1988/p/3939420.html
Copyright © 2011-2022 走看看