zoukankan      html  css  js  c++  java
  • HDU 4576 Robot

    Robot

    Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
    Total Submission(s): 148    Accepted Submission(s): 40


    Problem Description
    Michael has a telecontrol robot. One day he put the robot on a loop with n cells. The cells are numbered from 1 to n clockwise.



    At first the robot is in cell 1. Then Michael uses a remote control to send m commands to the robot. A command will make the robot walk some distance. Unfortunately the direction part on the remote control is broken, so for every command the robot will chose a direction(clockwise or anticlockwise) randomly with equal possibility, and then walk w cells forward.
    Michael wants to know the possibility of the robot stopping in the cell that cell number >= l and <= r after m commands.
     
    Input
    There are multiple test cases. 
    Each test case contains several lines.
    The first line contains four integers: above mentioned n(1≤n≤200) ,m(0≤m≤1,000,000),l,r(1≤l≤r≤n).
    Then m lines follow, each representing a command. A command is a integer w(1≤w≤100) representing the cell length the robot will walk for this command.  
    The input end with n=0,m=0,l=0,r=0. You should not process this test case.
     
    Output
    For each test case in the input, you should output a line with the expected possibility. Output should be round to 4 digits after decimal points.
     
    Sample Input
    3 1 1 2 1 5 2 4 4 1 2 0 0 0 0
     
    Sample Output
    0.5000 0.2500
     
    Source
     

    题意思路:

          机器人在开始在位置1,有一个环1-n,机器人有m个操作,每次都可以向前或向后走,求最后机器人在[l,r]范围内的概率。简单的DP递推。

          这个题我想说说我的看法,一开始我直接用map记录的次数TlE,改写dp概率数组用C提交加上读入优化可以过,这是基于此题N的规模(<=200)与测试数据的关系吧。

    但是如果W巨大的时候利用map转移次数还是有优势的(个人看法,记得前年网络预选赛的一道关于时钟的DP就是利用的map,因为状态不多,也就是离散的原因比较快)。

     代码也就没有什么意义了。

    #include <stdio.h>
    #include <stdlib.h>
    int getint(){
        char c=getchar();
        int t=0;
        while(c<'0'||c>'9'){
            c=getchar();
        }
        while(c>='0'&&c<='9'){
           t=t*10+c-'0';
           c=getchar();
        }
       return t;
    }
    double dp[208] ,dp2[208];
    int main(){
       int N , m ,l, r ,i,w,p,x;
       double ans;
       while(scanf("%d%d%d%d",&N,&m,&l,&r)!=EOF){
         if(N==0&&m==0&&l==0&&r==0)
             break ;
        memset(dp,0,sizeof(dp)) ;
        memset(dp2,0,sizeof(dp2)) ;
        dp[1]++ ;
        while(m--){
           //scanf("%d",&w) ;
           w=getint() ;
            for(p=1;p<=N;p++){
                if(dp[p]==0)
                    continue ;
                x=(p+w)%N ;
                if(x==0)
                    x=N ;
                dp2[x]+=0.5*dp[p] ;
                x=(p-w)%N ;
                if(x<=0)
                    x=N+x ;
                dp2[x]+=0.5*dp[p];
            }
            for(i=1;i<=N;i++){
                dp[i]=dp2[i] ;
                dp2[i]=0 ;
            }
        }
        ans=0 ;
        for(i=l;i<=r;i++)
            ans+=dp[i] ;
        printf("%.4f
    ",ans) ;
       }
       return 0 ;
    }

       N较大时的小技巧。

    #include <iostream>
    #include <string.h>
    #include <string>
    #include <algorithm>
    #include <stdio.h>
    #include <queue>
    #include <set>
    #include <map>
    #include <limits.h>
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    using namespace std ;
    struct Me{
      int M ,N;
      int L ,R ;
      map<int ,int>dp ,dp2;
      Me(){}
      Me(int n,int m ,int l ,int r):N(n),M(m),L(l),R(r){}
      void gao_qi(){
        int w ;
        dp.clear() ;
        dp2.clear() ;
        map<int,int>::iterator p ;
        dp[1]++ ;
        while(M--){
            scanf("%d",&w) ;
            for(p=dp.begin();p!=dp.end();p++){
                int x ;
                x=((p->first)+w)%N ;
                if(x==0)
                    x=N ;
                dp2[x]+=(p->second) ;
                x=((p->first)-w)%N ;
                if(x<=0)
                    x=N+x ;
                dp2[x]+=(p->second) ;
            }
            dp.clear() ;
            dp=dp2 ;
            dp2.clear() ;
        }
        double all ,show ;
        all=show=0 ;
        for(p=dp.begin();p!=dp.end();p++){
            all+=(p->second) ;
            if(L<=(p->first)&&(p->first)<=R)
                show+=(p->second) ;
        }
        printf("%.4lf
    ",show/all) ;
      }
    };
    int main(){
       int n , m ,l, r ;
       while(scanf("%d%d%d%d",&n,&m,&l,&r)){
         if(n==0&&m==0&&l==0&&r==0)
             break ;
         Me me(n,m,l,r) ;
         me.gao_qi() ;
       }
       return 0 ;
    }
  • 相关阅读:
    OpenGL入门学习
    linux下安装sqlite3
    SQLite 之 C#版 System.Data.SQLite 使用
    .net程序运行流程
    一种简单,轻量,灵活的C#对象转Json对象的方案
    C# 获取Windows系统:Cpu使用率,内存使用率,Mac地址,磁盘使用率
    WPF中选择文件及文件夹
    要想创业成功,千万不能在这十个方面走弯路
    [译]Quartz.Net 框架 教程(中文版)2.2.x 之第三课 更多关于Jobs和JobDetails
    [译]Quartz 框架 教程(中文版)2.2.x 之第二课 Quartz API,Jobs和Triggers简介
  • 原文地址:https://www.cnblogs.com/liyangtianmen/p/3250359.html
Copyright © 2011-2022 走看看