zoukankan      html  css  js  c++  java
  • 模拟退火算法学习笔记

    摘自:百度百科,《算法竞赛入门到进阶》

    一:概念

    是一种基于概率的算法

    它是基于Monte-Carlo迭代求解策略的一种随机寻优算法

    结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。

    理论上算法具有概率的全局优化性能

    二:基于的物理原理:

    一个高温物体降温到常温,温度越高时,降温的概率越大(更快),温度越低时降温的概率越小(更慢)。模拟退火算法就是利用这样的思想进行搜索,多次降温(迭代),直到获得一个可行解。

    如图,A是局部最高点,B是全局最高点。普通贪心,如果在A附近,会停在局部最高点A,无法到达B。但模拟退火算法可以跳出A,得到B。它可以以一定的概率来接受比当前点更低的点,使程序有机会摆脱局部最优到达全局最优,这个概率会随时间不断减小,从而最后能限制在最优解附近。

    三:主要步骤

    (1)设置一个初始温度T

    (2)温度下降,状态转移。从当前温度按降温系数下降到下一个温度,在新的温度计算当前状态。

    (3)如果温度降到设定的温度下界,程序停止

    伪代码:

        eps=1e-8;    //终止温度,接近0,用于控制精度 
        T=100;        //初始温度,应该是高温,100°为例 
        delta=0.98;    //降温系数,控制退火的快慢,小于1,以0.98为例
        g(x)        //状态x的评价函数,例如能量
        now,next;    //当前状态和新状态
        while(T>eps)    //如果当前温度未降到eps 
        {
            g(next),g(now);    //计算能量 
            dE=g(next)-g(now);    //能量差 
            if(dE>=0)        // 新状态更优,接受 
                now=next;     
            else if(exp(dE/T)>rand())    //如果新状态更差,在一定概率下接受它,e^(dE/T) 
                now=next;
            T*=delta;    //降温,模拟退火过程 
        } 

    科学家理论分析,概率为:e^(dE/T)

    四:参数

    模拟退火在调参方面比较麻烦,参数要合适才能得到比较优的解,因为初学,经验不足,先留个坑吧。

    五:应用

    HDU 2899  求函数最小值

  • 相关阅读:
    PHP流程控制考察点
    PHP运算符考察点
    PHP的魔术常量
    android窗体溢出WindowManager$BadTokenException: Unable to add window -- token null is not for an applica
    android网络访问异常java.lang.SecurityException: Permission denied (missing INTERNET permission?)
    快速排序算法思想
    播放Assets下的指定音频时,变成播放所有音频了
    python-01-Python环境搭建
    eclipse安装svn
    DOM children方法
  • 原文地址:https://www.cnblogs.com/liyexin/p/13454290.html
Copyright © 2011-2022 走看看